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Abstract

It is common practice to estimate the volatility-growth link by specifying a
growth equation such that the variance of the error term appears as an explanatory
variable. Hardly any of existing applications of this framework includes exogenous
controls in the variance equation. We show that the absence of relevant explanatory
variables in the variance equation is not innocuous, leading to an omitted variable
problem with an biased and inconsistent estimate of the volatility-growth link. Our
simulations suggest that this effect is large and should be addressed in the empirical
work. Once the appropriate controls are included consistency is restored.
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1 Introduction

The background – Understanding the link between volatility and growth is central to

many empirical studies. A prominent approach includes the variance of the error term of

a growth regression into the very same growth equation as an explanatory variable. This

is the approach pioneered by Ramey and Ramey (1995), henceforth RR. This approach

has been extremely influential and led to many valuable insights. Despite this huge

success, endogeneity of growth volatility has been rarely addressed.

The problem – Although there is a consensus that growth volatility is endogenous to

determinants of economic growth,1 empirical modeling of such dependence has not been

discussed in detail so far. We argue that failing to properly account for dependence of

the error variance on exogenous factors in this type of modelling may substantially bias

the parameter estimates. It has already been recognized by RR that the endogeneity of

volatility is important. They make the variance of the error term in the growth regression

dependent on the squared residuals taken from forecasting regressions for government

expenditures. Their idea was to use forecast errors as a measure of unobserved shocks. RR

do not discuss, however, the correct specification of variance endogeneity or consequences

of its misspecification, leaving the issue of endogenous volatility basically implicit.

The problem with the standard specification is the absence of explanatory variables in

the equation for the growth volatility. This suggests that more explanatory variables are

needed in the conditional variance equation than just forecast errors. Since the volatility

term appears among explanatory variables in the growth equation, omitted variables

in the conditional variance equation potentially lead to correlation between explanatory

variables and the error term in the growth equation. This renders estimation of the

feedback effect on economic growth captured by the variance term in the growth equation

inconsistent. Inconsistence persists even if there are no omitted variables in the growth

equation and if all variables are measured without error.

Our proposal – This note discusses an extension of the original RR model and specifies

it as a model of conditional heteroscedasticity in mean (henceforward CH-M). As in RR,

there is a growth equation that contains the volatility term and a variance equation. The

extension consists in explicit allowing for explanatory variables in the variance equation.

Using these additional explanatory variables, the RR approach will continue to remain a

highly useful framework to investigate the volatility-growth link.

We demonstrate theoretically that a bias arises in the CH-M model of output growth

1For a discussion of the literature on economic growth see Temple (1999). An elaborated investigation
on linking the endogeneity of macroeconomic volatility to weak institutions is in Acemoglu et al. (2003).
Theoretical analysis of the joint endogeneity of long-run growth and short-run volatility are undertaken
in the ’natural volatility’ literature (see e.g. Matsuyama, 1999, Francois and Lloyd-Ellis, 2003, Wälde
2005, Posch and Wälde, 2011). Aghion et al. (2010) present strong empirical negative dependence
between volatility and growth. Fernández-Villaverde et al. (2011) document strong influence of volatility
shocks on real variables like output, consumption, investment and hours worked.
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if relevant control variables are omitted from the conditional variance equation. Thus, for

example, neglecting the RR prediction error of government expenditure shocks potentially

leads to a systematic bias in the estimated parameters of interest, particularly the one

that links volatility and growth. In a simulation based on an example borrowed from the

literature (Posch 2011), we show that the above bias is of economic importance and shed

light on the empirical volatility-growth nexus.

The literature – The most recent literature that follows the empirical setup of RR

includes Dawson et al. (2001), Imbs (2007), Edwards and Yang (2009), Ponomareva and

Katayama (2010), Posch (2011) and Posch and Wälde (2011), among others. Of these

only Edwards and Yang (2009), Posch (2011) and Posch and Wälde (2011) explicitly

consider the conditional volatility. Edwards and Yang (2009) analyze spatial differences

in the influence of volatility on growth, Posch (2011) and Posch and Wälde (2011) in-

clude tax rates and further controls. None of these papers, however, addresses the source

of the potential bias in the estimates of the volatility-growth link and its quantitative

importance. It is somewhat unfortunate that in the rest of the literature modelling con-

ditional variance has passed unnoticed, whereas exactly this gives rise to the mentioned

systematic bias of the estimated effect of volatility on growth.

Remarkably, Dawson et al. (2001) and Ponomareva and Katayama (2010) discuss

a related bias which appears in the empirical RR model if some explanatory variables

in the growth equation are measured with error. We show that the bias induced by

omitted variables in the conditional variance equation can be alternatively represented

as an errors-in-variables bias, where volatility term could be considered as a regressor

measured with error. Thus both types of biases have similar manifestation. Still an

important difference in our case is that if some relevant controls are omitted form the

volatility equation the bias will arise even if all other variables included in the growth

regression are measured without error.

Our model may be viewed as a special case of the original ARCH-M model of Engle

et al. (1987) and Nelson (1991), where the coefficients in front of autoregressive terms in

the variance equation are set to zero. As a consequence, only explanatory variables of a

current period matter for the variance (see Engle et al., 1987, equation 9, with α = 0).

Without emphasizing the role of explanatory variables in the variance equation explicitly,

Engle et al. (1987) provide the framework that accounts for the bias discussed here.

The outline – Section 2 presents an augmented CH-M model and provides theoretical

insights into the existence and the source of the bias. It also conducts Monte-Carlo

simulations in order to show the quantitative importance of the bias for the RR estimate

of the link between volatility and growth. Section 3 concludes.
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2 A volatility-growth regression with controls in the

conditional variance equation

2.1 The regression setup

Consider the following extension of Ramey and Ramey (1995) borrowed from Posch

(2011). Our argument is not limited for the illustration at hand, in fact it holds for any

CH-M model in which a feedback effect in the growth equation is present. We specify

the following growth equation and conditional variance equation,

∆yit = νσit + θXit + εit, where εit ∼ N(0, σ2

it), (1a)

log(σit) = αi + µt + βZit. (1b)

In these equations, ∆yit is the growth rate of output for country i in year t, σit is the

standard deviation of the error term in the growth equation; Xit is a vector of control

variables (e.g., the Levine-Renelt variables); Zit is a vector of control variables (e.g.,

a subset of Xit); αi and µt are country and time fixed effects; θ and β are vectors of

coefficients. The key parameter of interest in a volatility-growth analysis is ν, which

links growth to volatility.

We will now show the importance of including additional controls in the conditional

variance equation in two ways. First, we will demonstrate analytically that omitted

control variables induce systematic bias into the maximum likelihood (ML) estimator of

the volatility-growth link ν. Second, we will confirm by simulation that this bias is large

quantitatively.

2.2 The omitted variable problem

2.2.1 ML estimation with neglected controls in variance equation

Consider the model in (1a)-(1b), where for simplicity we drop the subscript i and fixed

effects, as they do not alter the argument. Suppose the standard deviation of the error

term in the correctly specified growth regression, σt, depends on explanatory variables

(for an example see Posch 2011, chap. 2.4): σt = exp{α+ βZt}. Once dependence on Zt

is neglected, the same standard deviation in the misspecified model, say σ̃t, will be given

just by: σ̃t = exp{α}. Keeping this in mind, growth equation (1a) can be written as

∆yt = νσt ± νσ̃t + θXt + εt

= νσ̃t + θXt + (εt + ν[σt − σ̃t])

= νσ̃t + θXt + ε̃t,

4

 Electronic copy available at: https://ssrn.com/abstract=2084152 



where ε̃t ≡ εt+ν[σt− σ̃t] and εt is not correlated with Xt and Zt by assumption. Inserting

for both σt and σ̃t in this new error term ε̃t we get

ε̃t = εt + νeα[eβZt − 1].

Consider now estimation of the equation

∆yt = νσ̃t + θXt + ε̃t

where explicit dependence on Zt in the variance equation is omitted. Omitting the

dependence on Zt amounts to specifying the error term in this equation identically to

that of the original equation (1a), i.e.

∆yt = νσ̃t + θXt + ut, where ut ∼ N(0, σ̃t), (2a)

log(σ̃t) = α. (2b)

It is straightforward to show (see Appendix A) that the maximum likelihood estimator

of the parameter ν in the misspecified model (2a)-(2b) has a form

ν̂ = T−1

T
∑

t=1

∆yt − θXt

σ̃t

Taking the expected value of ν̂ with respect to the distribution of the dependent variable

in the correctly specified model we obtain

E(ν̂) = ν T−1

T
∑

t=1

eβZt

as shown in Appendix A. The expected value is not equal to the true parameter ν unless

β = 0, meaning that ν̂ is biased. Further, the bias does not disappear asymptotically, as

plim ν̂ = ν EeβZ ,

meaning that unless the true β is equal to zero ν̂ is inconsistent.2

Clearly, in a correctly specified model which explicitly considers Zt in the variance

equation the ML estimator of ν has all the standard properties.

The result just demonstrated has one interesting practical implication. As Zt need

not always be a subset of Xt, even if some variables are not significant in the growth

equation, they may still be significant in the conditional variance equation. Consequently

2Repeating the steps outlined in Appendix A it is likewise possible to show that the ML estimate of
θ in the misspecified model is also biased and inconsistent.
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these variables may influence growth only indirectly, via volatility. This influence must

be accounted for, though, because otherwise the estimate of the volatility-growth link

will become inconsistent.

2.2.2 An alternative look at the source of the bias

The above demonstrated bias can also be interpreted as an errors-in-variables bias, where

growth volatility could be seen as a regressor measured with error. Assume that by

some chance we are able measure the volatility term in the data (e.g., via collecting

multiple proxy variables for growth volatility and creating a composite index). Though,

our measure can be only imperfect. Once the true measure, σt, in the growth equation

is substituted by the available imperfect measure, σ̃t, the error term immediately adjusts

by the difference between the two, where the difference is completely attributed to the

measurement error. Since this difference is a function of Zt, as the true volatility is the

function of Zt, the new error term will be correlated with Xt, namely

Cov (Xt, ε̃t) = Cov (Xt, εt) + Cov
(

Xt, νe
α[eβZt − 1]

)

= νeαCov
(

Xt, e
βZt

)

.

Whenever β = 0 or Xt and Zt are not stochastically independent, then Cov (Xt, ε̃t) 6= 0.

Correlation between the error term and regressors is a common source of the endogeneity

bias. Except of σt, all other variables, namely Xt and Zt, are implicitly assumed to be

measured correctly, which is different from the analysis of Dawson et al. (2001).

2.3 Monte-Carlo simulation

To provide quantitative support for the above demonstrated bias we simulate our model.

As in the analytical discussion we consider the model in (1a)-(1b) suppressing fixed effects

for simplicity.3 We assume that Xt = Zt, i.e., both growth rate of output and variance

of this growth rate are determined by the same set of explanatory variables. Once again,

this assumption is purely for the ease of illustration, our argument would also apply if Xt

was independent from Zt. We assume Zt to follow a structure displaying time-variation

of the kind shown in Figure 1.4

3We also included lagged squared error terms ǫ2i,t−1
and/or lagged conditional variances log σi,t−1 in

the conditional variance equation (1b), extending our exponential CH-M model to the class of GARCH-
M models (cf. Engle and Bollerslev, 1986). The inclusion of (generalized) autoregressive terms does not
change our results.

4This structure was originally motivated by understanding the effect of taxes and tax reforms on
growth and volatility. Such a tax vector could reflect three tax reforms over the length of time for
which data is available. Tax rates are constant between reforms. The resulting standard deviations in
the lower panel show that values are quantitatively reasonable. From a cross-sectional perspective, Zt

(or more precisely, Zi) could reflect differences in tax rates accross countries i with tax rates that are
time-invariant. Neglecting the cross-sectional variation would then also bias estimates.
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Figure 1 Our control variable Zt and the implied standard deviation σt of the residuals

Under these assumptions our model for the simulation becomes

∆yt = νσt + θZt + εt, where εt ∼ N(0, σ2

t ),

log(σt) = α + βZt.

For a set of predetermined parameters ν, θ, α, and β, conditional on the tax vector Zt and

the vector of variances σ2

t at any time t, we draw a sample of T = 1.000 errors εt from the

normal distribution N(0, σ2

t ). This allows us computing T values for ∆yt. Having done

so, we estimate the parameters of the above model by ML from the simulated data. The

resulting numbers constitute the estimates from a correctly specified model, of which we

record the estimated value of ν. Next we consider the misspecified model ignoring Zt in

the variance equation. Estimating by ML the misspecified model, we obtain what we call

biased parameters. Among these we again record the estimated value of the parameter

ν. We repeat this procedure N = 10.000 times, which results in N pairs of estimates of

ν, first element of this pair being the estimate from the correctly specified and second

element - from the misspecified model. After that we plot these estimates of ν against

the true values of ν chosen for the simulation. We do not vary the parameters α and β.
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Figure 2 Estimates for true and misspecified model for various ν

Simulation results are summarized in Figure 2. The horizontal axis of this figure shows

the true values for ν used in the simulation. On the vertical axis we plot the estimates

from the correctly specified (asterisks) and misspecified (circles) models. In addition, we

draw a 45◦ line to illustrate the equality to the true values of ν. We see that estimates from

the correctly specified model are all stretching along the 45◦ line, whereas estimates from

the misspecified model fail to replicate the 45◦ line by wide margin. N and T have been

chosen such that confidence intervals around the estimated values are narrow enough to

be neglected. A similar picture likewise emerges with smaller sample sizes (e.g. T = 100).

Thus, Figure 2 shows that if Z is omitted from the variance equation, the estimates of

the feedback effect of the volatility on growth can be substantially biased, confirming our

analytical result.5 Our analysis sheds light on the empirical results, where the feedback

effect in the traditional RR analysis ν is substantially underestimated, which more than

doubles with additional controls in the variance equation (cf. Posch 2011, Table 7).

5Although lying beyond the scope of present discussion, we also find that estimates of θ in the
misspecified model are biased even more than those of ν.
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2.4 Outlook

Given the result above, the question of primary importance becomes: What are the right

controls that need to be included in the variance equation?

In some trivial sense practical work should consider all plausible variables as can-

didates for the variance equation (notably, variables on economic institutions, in which

respect Acemoglu et al., 2005, provide initial guidance). Sequential testing and elimina-

tion of jointly insignificant variables would subsequently be the least sophisticated way of

dealing with the problem. A more sophisticated approach to retaining the right variables

is the Bayesian averaging of ML estimates similar to that of Sala-i-Martin et al. (2004).

This approach is also more advantageous inasmuch as it simultaneously informs about

the robustness of the estimate of the volatility-growth link.

Since variable selection using the approach of Sala-i-Martin et al. (2004) is a project

in itself, we refrain from setting it up in the present paper. Yet we do call for future

research in this direction.

3 Conclusion

Economic theory suggests that the degree of volatility of an economy is endogenous.

Empirical frameworks that do not account for this endogeneity imply that the estimate for

the volatility-growth link is biased. We show this both theoretically and by Monte-Carlo

simulations. We suggest that the growth-volatility link should only be estimated if the

endogeneity of volatility is sufficiently controlled for by including explanatory variables

also in the variance equation.

Appendix

A ML estimation of the volatility-growth parameter

in the misspecified model

Derivation of the estimator – Consider the misspecified model (2a)-(2b). The individual

contribution to the likelihood is

ℓt =
1

σ̃t

√
2π

exp

{

−1

2

(

∆yt − (νσ̃t + θXt)

σ̃t

)2
}

,
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and the total log-likelihood reads

logL = −T

2
log (2π)− T log (σ̃t)−

1

2

T
∑

t=1

(

∆yt − θXt

σ̃t

− ν

)2

.

Taking first order condition with respect to ν we get

∂ logL
∂ν

= −1

2

T
∑

t=1

∂

∂ν

[

(

∆yt − θXt

σ̃t

− ν

)2
]

=

T
∑

t=1

(

∆yt − θXt

σ̃t

− ν

)

.

Setting this result to zero the ML estimate ν̂ of the true parameter ν in the misspecified

model immediately follows

ν̂ = T−1

T
∑

t=1

∆yt − θXt

σ̃t

.

In this result, the rest of the parameters are for the moment kept as their true unknown

values.

Properties of the estimator – Taking the expected value of ν̂ with respect to the

distribution of the dependent variable in the true model

∆yt = νσt + θXt + εt

we obtain

E (ν̂) = T−1

T
∑

t=1

E (∆yt)− θXt

σ̃t

= T−1

T
∑

t=1

E (νσt + θXt + εt)− θXt

σ̃t

= T−1

T
∑

t=1

[

νσt

σ̃t

+
E(εt)

σ̃t

]

= νT−1

T
∑

t=1

exp{α + βZt}
exp{α} = νT−1

T
∑

t=1

eβZt

This implies that E (ν̂) 6= ν unless β = 0 in the true model.

Furthermore, for any sequence of random variables {Zt}Tt=1
with appropriate con-

ditions on the moments (and possibly distribution) of Zt a corresponding law of large

numbers applies and

T−1

T
∑

t=1

eβZt
p→ E

(

eβZ
)

.

as T → ∞. From this follows that

plim ν̂ = ν EeβZ 6= ν

unless β = 0 in the true model.
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