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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models have become the workhorse in

macroeconomics, capturing aggregate dynamics over the business cycle. They are frequently

used in academic research and to assess various policy interventions. Given the importance

and relevance of these models in theoretical and applied research, surprisingly little work has

been focused on reconciling business cycle facts with asset pricing implications (see the re-

sults in Jermann, 1998; Tallarini, 2000; Rudebusch and Swanson, 2008). The 2007 economic

and credit crises intensified the desire to link macro and finance.1 Conceptually, financial

models should benefit from specifying the stochastic discount factor consistently with macro-

dynamics, whereas macroeconomic models could benefit from rich financial data.2 Essential

features of this strand of literature are the macro-finance interaction, the mixed frequency of

macroeconomic and financial data, and latent variables. Yet, there is no clear consensus on

how macro and financial data should be linked consistently, and how data are used efficiently

in the estimation of macro-finance models.

Our aim is to develop a paradigm in which macroeconomics, finance, and econometrics

are coherently linked. This paper provides a framework for estimation of dynamic equilib-

rium models with both macro and financial variables, taking account of mixed frequencies

and latent variables. We believe that a structural estimation approach can shed light on the

channels through which financial markets and the real economy interact. This is important

for the design of monetary and fiscal policies and to evaluate policy measures. Specifically,

our contribution is threefold. First, we propose using DSGE models in continuous time to

facilitate incorporation of financial market variables in a structural manner. Second, we

propose and develop martingale estimating functions (MEF) for such macro-finance models.

Our continuous-time formulation and the MEF approach naturally accommodate variables

arriving at different frequencies by a model-based time-aggregation and thus facilitates sta-

tistical inference in the presence of mixed-frequency data. Third, we extend the baseline

MEF approach to further consider the case of mixed-frequency data estimation and addi-

tionally develop techniques for estimation of dynamic equilibrium models in case of latent

1Recent developments illustrate that such a unified framework is promising and intriguing: Gertler and
Karadi (2011) present a DSGE model with financial frictions in which intermediaries face balance sheet
constraints. Hence, unconventional monetary policy, expanding central bank credit intermediation, may serve
as a complement to financial intermediation. Brunnermeier and Sannikov (2014) develop a macroeconomic
model with a financial sector and endogenous leverage which leads to crisis episodes, showing a mechanism
for how small shocks can have potentially large effects on the real economy.

2There are developments incorporating macro factors in financial models of the term structure (Ang and
Piazzesi, 2003; Dewachter and Lyrio, 2006; Diebold, Rudebusch, and Aruoba, 2006; Hördahl, Tristani, and
Vestin, 2006; Rudebusch and Wu, 2008) and incorporating financial factors in the estimation of macro models
(Ang, Piazzesi, and Wei, 2006; van Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramı́rez, 2012).
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variables by a simulation-based MEF (SMEF).

We make the link between macro and financial markets explicit by showing how finan-

cial market data (say, interest rates or return data) can be used to identify the structural

parameters characterizing preferences and technology. To make the least stringent timing

assumption we cast our DSGE model in continuous time, solve for the general equilibrium

of the real economy and asset prices, and then develop three alternative estimation proce-

dures. We consider off-the-shelf regression-based methods (combined with minimum distance

methods to identify structural parameters), the generalized method of moments (GMM), and

martingale estimating functions (MEF). Our continuous-time formulation is useful in three

respects: (i) to place structure on the residuals in the regression-based methods, (ii) to obtain

the general equilibrium dynamics in terms of data and parameters for the GMM and MEF

approaches, and (iii) to account for the dependence among variables during the observation

interval.

Our analysis is motivated by the fact that financial market data typically are available

at higher frequency and of better quality than aggregate macro data (e.g., they are not

subject to revision). In a unified framework, financial variables provide an additional source

of evidence on the state of the economy, beyond macro series. So far only a few researchers

have made use of this property in DSGE models. One apparent challenge is that discrete-

time models are not time invariant (see Marcellino, 1999; Foroni and Marcellino, 2014). Put

differently, the parameter estimates can only be properly interpreted in context of the par-

ticular way in which we solve our models and given the particular rate at which we sample

the underlying process.3 But any fixed period length is arbitrary. Moreover, the frequency

at which economic agents make their decisions may not necessarily coincide with the ob-

servation frequency of either macro or financial variables. Formulating structural models

in continuous time offers a way forward. Our approach yields explicit functional forms for

the relations among observables without taking a stand on the frequency at which economic

agents make their decisions. Having at hand these functional forms, the availability of fi-

nancial data at higher frequency (say, daily) than consumption and production (monthly or

quarterly) then allows precise approximation of integrals by summation over days. Because

the structural parameters enter into the coefficients on these terms, financial data improve

identification. Our results indicate that our approach may help resolve the lack of identifi-

cation of some parameters in the equivalent (log-linearized) discrete-time model (cf. Canova

and Sala, 2009). We also show how the MEF approach can be extended to cope with (more

3The temporal aggregation literature started with Amemiya and Wu (1972); Geweke (1978). Others
noted how the time-invariance problem relates to the behavior of agents (Christiano and Eichenbaum, 1987).
Recent contributions include Kim (2010) and Giannone, Monti, and Reichlin (2014).
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general) mixed-frequency data and latent variables, including regime-switching models and

stochastic volatility.

We depart from the traditional discrete-time formulation of DSGE models and their

estimation for three related technical reasons.4 First, there is no need to perform numerical

integration to compute expectations, since the Hamilton-Jacobi-Bellman (HJB) equation

is non-stochastic, thus simplifying computation of the first-order principles. Second, some

solutions allow for an analytical likelihood function, simplifying the inference on structural

parameters even in the presence of nonlinearities and non-normalities (see Posch, 2009).

Third, many seminal models in finance are stated in continuous time (such as the equilibrium

models of Vasicek, 1977; Cox, Ingersoll, and Ross, 1985a), which is particulary useful in the

development of a unified framework in macroeconomics and finance.

Our work builds on a tradition in macroeconomics estimating continuous-time models for-

mulated as systems of (linear) stochastic differential equations.5 The traditional approach

is to solve the system, leading to a coefficient matrix that is a function of the exponential

of a matrix depending on the structural model parameters (cf. Phillips, 1972). As illus-

trated in McCrorie (2009), this complicates identification due to the aliasing phenomenon:

The distinct stochastic processes may look identical when sampled at discrete intervals (see

Hansen and Scheinkman, 1995, p. 769).6 In this paper, we adopt an alternative approach of

integrating the logarithmic (nonlinear) system to get an ‘exact’ discrete-time analog. The

resulting system is in logarithmic growth rates rather than levels. It involves a coefficient

matrix linear in a set of known functions of the structural parameters, and does not involve

any matrix exponential. An analysis of whether our approach alleviates the aliasing problem

in the linear model is interesting, but beyond the scope of this paper.

Our martingale estimating functions (MEF) approach benefits from the continuous-

time structure of the dynamic equilibrium model when computing conditional expectations

through deterministic Taylor expansions or using the mixed-frequency properties of the data,

but may also be applied to discrete-time models. In either case, the models produce mar-

4An non-exhaustive list of references on the estimation of discrete-time DSGE models is Ruge-Murcia
(2007); Fernández-Villaverde and Rubio-Ramı́rez (2007), and An and Schorfheide (2007). While the first
two references show how to use standard econometric methods and the particle filter (instead of the linear
Kalman filter) for estimation, the latter reviews Bayesian methods. In an accompanying web appendix we
discuss in Section B.4 how an Euler approximation could be used to apply this toolbox to continuous-time
DSGE models. We do not follow this route because the continuous-time formulation naturally accounts for
the different observation frequencies of macro and financial market data, a benefit which in this case would
be lost.

5Seminal papers are Bergstrom (1966); Sims (1971); Phillips (1972, 1991), along with the contributions
on rational expectations models by Hansen and Sargent (1991); Hansen and Scheinkman (1995).

6Hence, one may argue that the use of continuous-time models is not a panacea. What is gained in terms
of time invariance may come at the cost of needing to solve a more severe econometric identification problem.
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tingale increments, and the martingale estimating functions are defined as weighted sums of

these. The optimal weights in MEF are time-varying matrices that are in the information set

one period earlier and depend on the conditional variance of the martingale increment and

the conditional mean of the parameter derivatives (see Christensen and Sørensen, 2008). In

the models we consider, these optimal weights can be analytically derived and depend on the

structural model parameters. MEF exactly identifies all structural parameters of the system,

through its set-up and by having both the weights and martingale increments depend on the

structural parameters. We contrast this estimation approach to standard GMM, which we

prove is inefficient relative to the MEF estimator.7

We extend the MEF approach in two directions. First, we further develop the mixed-

frequency nature of our set-up. The baseline MEF approach utilizes financial market data

at a daily level to develop proxies at the lower frequency (monthly or quarterly) when

all the macro variables are observed at the latter. Our extended Mixed-Frequency MEF

(MF-MEF) approach allows for the macro variables themselves to be observed at different

frequencies. We stipulate the model at a high frequency, monthly in our applications, and

use the other variables at the frequencies at which they occur. For example, we consider

the monthly consumption series together with the quarterly GDP series. We implement the

approach by considering the actual quarterly output in the month it becomes available and

model-based predictions in the two months within the quarter where output is unavailable.

Monthly consumption and quarterly GDP are combined with the monthly proxies based

on the daily financial variable. Using mixed-frequency data for estimation has recently

received considerable attention in the literature, see, e.g., Ghysels, Sinko, and Valkanov

(2007), Andreou, Ghysels, and Kourtellos (2010, 2013), and Schorfheide and Song (2014).

Our MF-MEF approach provides a structural approach for mixed-frequency estimation.

Second, we extend the MEF set-up to allow for latent variables. In the Simulated MEF

(SMEF) approach we simulate the latent variables using the process implied by the model.

The simulated paths are used to obtain the conditional expectations that are used in the MEF

approach. Model-consistent proxies are used to keep the simulated paths from becoming

too dispersed over time. In our implementation we consider three cases: (i) An unobserved

interest rate, (ii) a regime-switching spot rate volatility process, and (iii) stochastic volatility,

but the approach can be generalized to include other latent variables, such as expected

7We consider the version of GMM common in practice, based on the same (small) number of conditional
moments as MEF, and expanding these using instruments to get sufficiently many moments. We also discuss
the relation between this standard GMM procedure, MEF, and the GMM literature on efficiency bounds and
optimal instruments. In addition, we compare to regression-based two-step procedures of first estimating
reduced form parameters, then obtaining structural parameters by minimum distance. These procedures are
inefficient relative to MEF, too, and do not fully correct for endogeneity in the system.
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inflation, (stochastic) discount rates, etc.

Though there is a tradition in macroeconomics to model financial frictions, we illustrate

our approach for a simple DSGEmodel where the equilibrium dynamics are available in terms

of observable quantities, namely, consumption, output, and interest rates. It is important

to study the properties of our estimation methods in simple continuous-time models before

addressing more elaborate models at the vanguard of the DSGE literature, including financial

intermediation and frictions.8 Indeed, financial frictions may help increase the persistence

of temporary shocks, and lead to amplification and propagation of shocks. One shortcoming

of our specification is that it is not explaining the dynamics of high-frequency financial

data, in particular, the effects from the macroeconomy on the dynamics of the interest rate.

In our macro-finance model, financial shocks do translate from financial variables to the

real economy (see Jermann and Quadrini, 2012). Nonetheless, the channels through which

financial frictions affect the macroeconomy and through which shocks are propagated to

financial variables are missing.9

We consider logarithmic preferences together with a linear technology as an important

benchmark case because it allows for an analytical solution of the continuous-time model.

Moreover, we have some choice in modeling the interest rate dynamics. Specifications of this

kind date back to Cox, Ingersoll, and Ross (1985a), and are frequently used in macro-finance

models. Since the MEF approach is not limited to analytical solutions, but applicable to

cases where the researcher is provided with a solution in the form of policy functions, our

illustrating example can be used as a point of reference for exploring broader classes of

dynamic general equilibrium models.

We apply our model to both simulated and empirical data on production, consumption,

and interest rates. Our Monte Carlo study examines the properties of our estimation ap-

proaches in 1,000 simulated data sets of 25 years each for both monthly and quarterly macro

data, along with daily financial market data, roughly in line with the availability of empir-

ical figures. The results show that the GMM and MEF approaches generally are able to

accurately estimate the parameters of the (correctly specified) model, and that the interest

rate data help identifying the structural parameters. When differences appear, MEF is more

precise than GMM, and in some cases identifies more parameters, whereas both approaches

are preferred over alternatives based on regression and minimum distance.

8The literature on financial frictions emerged from the seminal contributions by Bernanke and Gertler
(1989); Kiyotaki and Moore (1997); Bernanke, Gertler, and Gilchrist (1999). Recent contributions include
Liu, Wang, and Zha (2013) and Christiano, Motto, and Rostagno (2014).

9For example, as in Brunnermeier and Sannikov (2014), due to occasionally binding constraints the effects
of small shocks may depend on the state of the economy, say, normal times versus crisis episodes. Accounting
for such regime dependence calls for our MEF extensions to stochastic volatility and/or regime-switching.
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Our empirical application to 30 years of U.S. data shows that it is possible to estimate

our macro-finance model using macro and high-frequency financial data in combination,

although this simple model is likely to be misspecified. The results imply a long run mean of

the interest rate around 10% with a 1.5% volatility annually and only weak mean reversion.

Comparing our simulated results to empirical estimates and/or the estimated interest rate,

when treating it as a latent variable, indicates potential misspecification of the simple model.

Nonetheless, due to its simplicity and tractability, the AK-Vasicek model specification should

provide a benchmark for future research.

The paper proceeds as follows. Section 2 summarizes the macroeconomic theory and

solution techniques, and provides a comparison to the discrete-time model. Section 3 presents

the estimation strategies. Sections 4 and 5 provide Monte Carlo evidence on small sample

properties of our estimation strategies and report empirical estimates. Section 6 concludes.

Technical derivations and proofs of main results are deferred to the appendix, Section 7.

Further derivations and results are available in an accompanying web appendix.

2 Framework

Our model is cast in continuous time (Eaton, 1981; Cox, Ingersoll, and Ross, 1985a). This

allows the application of Itô’s calculus, and in some cases we can solve the model analytically

to obtain closed-form expressions which facilitates statistical inference. However, as much

research in the DSGE literature is using discrete-time models, we also sketch how to adapt

our framework to discrete time.

2.1 The Macro-Finance model

Production possibilities. At each point in time, certain amounts of capital, labor, and factor

productivity are available in the economy, and these are combined to produce output. The

production function is a constant returns to scale technology subject to regularity conditions

(see Chang, 1988),

Yt = AtF (Kt, L), (1)

where Kt is the aggregate capital stock, L is the constant population size, and At is total

factor productivity (TFP), in turn driven by a standard Brownian motion Bt,

dAt = µ(At)dt+ η(At)dBt, (2)
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with µ(At) and η(At) generic drift and volatility functions satisfying regularity conditions.10

The capital stock increases if gross investment It exceeds capital depreciation,

dKt = (It − δKt)dt+ σKtdZt, (3)

where δ denotes the mean and σ the volatility of the stochastic depreciation rate, driven by

another standard Brownian motion Zt.

Equilibrium properties. In equilibrium, factors of production are rewarded with marginal

products rt = YK and wt = YL, subscripts K and L indicating derivatives with respect to

Kt and L, and the goods market clears, Yt = Ct + It. By an application of Itô’s formula

(e.g., Protter, 2004; Sennewald, 2007), the technology in (2), capital accumulation in (3),

and market clearing condition together imply that output evolves according to

dYt = YAdAt + YKdKt +
1
2
YKKσ

2K2
t dt

= (µ(At)YA + (It − δKt)YK + 1
2
YKKσ

2K2
t )dt+ YAη(At)dBt + σYKKtdZt. (4)

This corresponds to equation (1) in Cox, Ingersoll, and Ross (1985a) (henceforth CIR), where

It − δKt is the amount of the output good allocated to the production process. In general,

Yt can be a nonlinear activity, determined by the output elasticity of capital.11

Preferences. We consider an economy with a single consumer, which we interpret as a rep-

resentative “stand-in” for a large number of identical consumers. The consumer maximizes

expected additively separable discounted life-time utility given by

U0 ≡ E0

∫ ∞

0

e−ρtu(Ct, At)dt, uC > 0, uCC < 0, (5)

subject to

dKt = ((rt − δ)Kt + wtL− Ct)dt+ σKtdZt, (6)

where ρ is the subjective rate of time preference, rt is the rental rate of capital, and wt is

the labor wage rate. We do not consider financial claims, which can be thought of as being

in zero net supply. The paths of factor rewards are taken as given by the representative

consumer. The generic utility flow function specification u(Ct, At) allows the possibility that

technology enters as an argument. This may represent a quest for technology and is included

for comparability with CIR.

10We assume that E(At) = A ∈ R+ exists, and that the integral describing life-time utility in (5) below is
bounded, so that the value function is well-defined.

11Unless we consider a nonlinear production process, our model is formally included in the CIR economy.
We are not aware of any other paper estimating the model’s structural parameters using macro and financial
data.
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2.2 The Euler equation

The relevant state variables are capital and technology, (Kt, At). For given initial states, the

value of the optimal program is

V (K0, A0) = max
{Ct}∞t=0

U0 s.t. (6) and (2), (7)

i.e., the present value of expected utility along the optimal program.12 It is shown in Ap-

pendix 7.1 that the first-order condition for the problem is

uC(Ct, At) = VK(Kt, At), (8)

for any t ∈ [0,∞) (subscripts C and K denoting derivatives), and this allows writing con-

sumption as a function of the state variables, Ct = C(Kt, At). The Euler equation is

duC
uC

= (ρ− (rt − δ))dt− uCC(Ct, At)

uC(Ct, At)
CKσ

2Ktdt+
uCC(Ct, At)

uC(Ct, At)
CAη(At)dBt

+
uCA(Ct, At)

uC(Ct, At)
η(At)dBt +

uCC(Ct, At)

uC(Ct, At)
CKσKtdZt. (9)

Economically, this gives the pricing kernel in the economy. Hence, we may use the Euler

equation (9) to shed light on how the rate of return on the physical asset is linked to any

risk-free security (cf. Posch, 2011). For this purpose we apply the conditional expectation

and rewrite terms to arrive at

ρ− 1

dt
Et

[
duC
uC

]

︸ ︷︷ ︸
cost of forgone consumption

= rt − δ +
uCC(Ct, At)

uC(Ct, At)
CKσ

2Kt

︸ ︷︷ ︸
certainty equivalent rate of return

≡ rft . (10)

Optimal behavior implies that the cost of forgone consumption on the left-hand side must

equal the certainty equivalent rate of return rft , corresponding to the rate on the instanta-

neously risk-free asset on the right-hand side of the equation.13

Moreover, the Euler equation determines the optimal consumption path. In the following,

we restrict attention to the case u(Ct, At) = u(Ct). Using the inverse marginal utility

function, we obtain the path for consumption,

dCt =
u′(Ct)

u′′(Ct)
(ρ− (rt − δ))dt− σ2CKKtdt− 1

2
(C2

Aη(At)
2 + C2

Kσ
2K2

t )
u′′′(Ct)

u′′(Ct)
dt

+CAη(At)dBt + CKσKtdZt, (11)

where u′ > 0 and u′′ < 0 (strict concavity of preferences).

12Christensen and Kiefer (2009) is a textbook reference on economic modeling and inference using dynamic
programming models.

13Note that −uCC(Ct, At)Ct/uC(Ct, At) measures the degree of relative risk aversion.
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2.3 Equilibrium dynamics of the economy

Applying the logarithm to the variables of the stochastic differentials (6), (4), and (11) the

equilibrium dynamics of the economy may be summarized by the instantaneous growth rates

d lnCt =

(
u′(Ct)(ρ− rt + δ)

u′′(Ct)Ct
− CKKtσ

2

Ct
− 1

2

C2
Aη(At)

2 + C2
Kσ

2K2
t

C2
t

u′′′(Ct)Ct + u′′(Ct)

u′′(Ct)

)
dt

+CAη(At)/CtdBt + CKσKt/CtdZt,

d lnYt =

(
µ(At)

At
+

(
Yt − Ct

Kt
− δ

)
KtYK
Yt

+ 1
2
σ2K

2
t YKK

Yt

)
dt− 1

2

Y 2
Aη(At)

2 + σ2Y 2
KK

2
t

Y 2
t

dt

+YAη(At)/YtdBt + σYKKt/YtdZt,

d lnKt = (rt − δ + wt/Kt − Ct/Kt − 1
2
σ2)dt+ σdZt.

If all variables Ct, Yt, and Kt along with TFP At were observed, estimation could be based

directly on this system and (2). While consumption and income are standard variables in

most macro studies, capital and technology are notoriously problematic, due to the risk

of mismeasurement. This is where we propose using financial variables in a unified macro-

finance framework, instead. The idea is to use model-based equilibrium conditions to identify

latent state variables using financial data. Thus, suppose that an interest rate rt is identified,

either directly in the data, or in the form of an equilibrium no-arbitrage condition such as rft

in (10), along with Ct and Yt.
14 We consider systems of stochastic differential equations that

can be used for estimation in this case, based on time series data on (Ct, Yt, rt), by recasting

the equilibrium dynamics in terms of this triple.

2.4 AK-Vasicek model with logarithmic preferences

In this section we consider an economy with technology given by Yt = AtKt, also known as the

AK model (this includes the technology in Brunnermeier and Sannikov, 2014), and assume

preferences of the type u(Ct) = lnCt. Our specification is interpreted as a parsimonious

description which allows us to study the macro-finance links in production economies with

optimizing agents. It is used as a benchmark and illustrates the issues and advantages of our

approach by making use of an analytical solution. With these assumptions, At = YK = rt

and Kt = Yt/At = Yt/rt, so the two relevant state variables (At, Kt) are expressed as known

functions of the observable variables (Yt, rt). In this case we have wt = YL = 0, such that

14One caveat is that some variables are observed as an integral over an interval (a flow) rather than at a
point in time (a stock; Harvey and Stock, 1989). We approximate a flow variable, e.g., Yt∆ at time t, by the

integral
∫ t

t−∆
Ysds. Observed growth rates of flow variables therefore correspond to lnYt − lnYt−∆.
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the equilibrium dynamics can be summarized as

d lnCt =
(
rt − ρ− δ − 1

2
σ2
)
dt+ σdZt, (12a)

d lnYt =
(
µ(rt)/rt + rt − ρ− δ − 1

2
η(rt)

2/r2t − 1
2
σ2
)
dt

+η(rt)/rtdBt + σdZt, (12b)

drt = µ(rt)dt+ η(rt)dBt. (12c)

In more general models, the consumption function is non-homogeneous with respect to TFP

At and capital Kt (or wealth, here the output-TFP ratio).15 The functions µ(·) and η(·) are
chosen such that boundedness conditions are met (cf. Posch, 2009). Recall that in the AK

framework, the interest rate (rental rate of capital) dynamics purely reflect TFP dynamics.

In the tradition of the finance literature, we illustrate the estimation of the model with the

interest rate governed by a Vasicek specification (henceforth the AK-Vasicek model).

The Vasicek (1977) mean-reverting specification for the rental rate of physical capital is

µ(rt) = κ(γ − rt) and η(rt) = η, where κ > 0 is the speed and γ the target rate of mean

reversion, and η the constant volatility. In this case, the equilibrium dynamics are

d lnCt =
(
rt − ρ− δ − 1

2
σ2
)
dt+ σdZt, (13a)

d lnYt =
(
κγ/rt − 1

2
η2/r2t + rt − κ− ρ− δ − 1

2
σ2
)
dt+ η/rtdBt + σdZt, (13b)

drt = κ(γ − rt)dt+ ηdBt. (13c)

Alternative Markov diffusion specifications of the interest rate process, such as the Cox,

Ingersoll, and Ross (1985b) square root process or others (see, e.g., Äıt-Sahalia, 1996), can

be implemented and the system estimated along the lines developed below. The analytical

solution does not depend on this particular choice.

In this AK-Vasicek model, the relation between the risk-free rate and the rental rate of

capital in (10) is given by

rft = rt − δ − σ2. (14)

This result is quite intuitive if we recall that consumption is proportional to the capital stock,

such that CKKt = Ct. Thus, the term uCC(Ct, At)CKKt/uC(Ct, At) in (10) equals minus

the coefficient of relative risk aversion, of unit magnitude for logarithmic preferences.16

Economically, (14) is the equilibrium asset pricing relationship, prescribing that the rate

of return to any riskless financial asset rft equal capital rewards rt net of the rate of de-

preciation δ and the risk premium associated with holding the physical asset. The equation

15In our benchmark case optimal consumption is linear in the capital stock, Ct = ρKt (cf. Appendix 7.1).
16Note that δ would also capture a constant level of inflation. This assumption, however, neglects inflation

dynamics. There is a number of ways to overcome this, which is part of our research agenda. Since the focus
of the present paper is methodological, we leave a thorough examination for future research.
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sheds light on the use of empirical data for estimating the macro-finance model: Rather than

observing the rental rate of capital rt (or TFP, or the capital stock), it is typically easier to

relate this to an observable riskless rate rft , or a close proxy, such as the 3-month interest

rate (cf. Chapman, Long, and Pearson, 1999).

2.5 Discrete-time formulation

In order to accommodate the discrete-time nature of the data, we integrate over s ≥ t,

employing exact solutions whenever possible to obtain an exact discrete-time analog in terms

of (observable) variables. In what follows, we treat the triple of variables (Ct, Yt, r
f
t ) as being

observable.17 Specifically, we use the risk-free rate rft rather than a direct measure of the

rental rate of capital rt as financial data.
18 This (more realistic) assumption implies that rt

is linked to the data, but may also depend on parameters. Using the system of differential

equations (13) with s− t fixed at ∆ together with the asset-pricing condition (14) yields

ln(Ct/Ct−∆)−
∫ t

t−∆

rfvdv = −
(
ρ− 1

2
σ2
)
∆+ εC,t, (15a)

ln(Yt/Yt−∆)−
∫ t

t−∆

rfvdv = κγ

∫ t

t−∆

1/(rfv + δ + σ2)dv − 1
2
η2
∫ t

t−∆

1/(rfv + δ + σ2)2dv

−
(
κ+ ρ− 1

2
σ2
)
∆+ εY,t, (15b)

rft = e−κ∆rft−∆ + (1− e−κ∆)(γ − δ − σ2) + εr,t, (15c)

in which we define martingale increments by

εC,t ≡ σ(Zt − Zt−∆), (16a)

εY,t ≡
∫ t

t−∆

η/(rfv + δ + σ2)dBv + σ(Zt − Zt−∆), (16b)

εr,t ≡ ηe−κ∆

∫ t

t−∆

eκ(v−(t−∆))dBv. (16c)

The system (15) of three equations forms the basis of our empirical specifications. At the

same time, it illustrates the main ideas underlying our approach. First, our analysis delivers

the explicit functional forms of the relations among observables. Second, the availability of

interest rate data at higher frequency (say, daily) than consumption and production (monthly

or quarterly) allows precise approximation of the ordinary (although not the stochastic) inte-

grals involving the interest rate by summation over days. In our applications, we approximate

the integrals by Riemann sums of the type
∫ t

t−∆
g(rfv )dv ≈ ∆

∑P
i=1 g(r

f
t−∆+i∆/P )/P , where

17In an extension below, we consider the case with latent interest rates.
18We use daily data on the 3-month interest rate as a proxy for the risk-free rate (cf. Chapman, Long, and

Pearson, 1999), along with aggregate consumption and output at lower frequencies.
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g(·) is a smooth function of rft−∆+i∆/P , the prevailing interest rate on a risk-free security on

day i in the period between t−∆ and t, and P is the number of days in the period.19 Third,

the structural parameters enter into the coefficients on the terms involving interest rates,

thus showing that financial data may serve to identify parameters of interest.

If we directly observed rt = rft + δ + σ2, the system would in fact be linear in a set of

coefficients, say β, on right-hand side variables of the type 1,
∫ t

t−∆
1/rvdv,

∫ t

t−∆
1/r2vdv, and

rt−∆. These β-coefficients play the role of reduced-form parameters, and are in turn known

functions of the structural parameters, namely, (κ, γ, η, ρ, δ, σ)⊤. This intriguing result may

be exploited even when rft is observed, instead, such that rt depends on parameters: We

may replace the unobserved time series rt with any reasonable proxy r̂t from (14), using

particular values δ = δ0 and σ = σ0. Technically, given the values for δ and σ, the rental

rate of capital is uniquely identified from the risk-free rate,

r̂t = rft + δ0 + σ2
0. (17)

This step allows using regression-based estimation methods (a textbook reference is Canova,

2007, see also web appendix Section A on linear regression methods specifically for our

problem, and Andreasen and Christensen (2015) for general sequential nonlinear regression

methods), with Riemann sums based on r̂t as feasible regressors approximating the integrals

involving rt, but this substitution is not required for the GMM and MEF methods presented

in Section 3 below, as δ and σ entering the right-hand side variables of (15) in a nonlinear

fashion is unproblematic for these.

We have some choice in turning system (15) into an empirical specification. We specify

a system of three regression equations for equidistant observations (we use ∆ = 1/12 for

monthly data, ∆ = 1/4 for quarterly data). Given the higher (say, daily) frequency of finan-

cial data, an alternative would be to start out with separate estimation of the third equation,

but the full system is likely closer to that required for more complicated models (e.g., if macro

variables enter in the interest rate equation). In any case, the high-frequency property of

the interest rate data is exploited in the approximation of the integrals as Riemann sums.

It is important to understand that in order to get to the empirical specification we

kept the full nonlinear structure of the model, without employing any approximation to the

solution of the economic model and/or to the equilibrium dynamics. This is in contrast to

the traditional discrete-time approach which we briefly discuss next.

19For notational convenience, we write P as a constant, but in our empirical approach we use the actual
number of days in the period (month or quarter).
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2.6 Comparison with discrete-time models

Here, we follow the tradition in the business cycle literature by writing our dynamic equi-

librium model in discrete time for a given frequency, which is typically aligned with the

observation frequency of macro variables. Thus, it is useful to sketch what our approach in

discrete time would be:

1. We would write down the equilibrium conditions of the discrete-time model. The main

difference is that no analytical solution is available (it is not possible to eliminate the

expectation operator from these conditions). This is not problematic but should be

kept in mind when comparing the empirical specifications of the model.20 In our case,

the equilibrium dynamics of the model can be summarized as

C−1
t = β̃Et

[
(1− δ̃ + r̃t+1)C

−1
t+1

]
, (18a)

Yt+1 = Yt + (r̃t − δ̃)Yt − r̃tCt + κ̃(γ̃ − r̃t)Yt/r̃t + η̃Yt/r̃tǫA,t+1 + σ̃YtǫK,t+1

+((r̃t − δ̃)Yt/r̃t − Ct + σ̃Yt/r̃tǫK,t+1) (κ̃(γ̃ − r̃t) + η̃ǫA,t+1) , (18b)

r̃t+1 = r̃t + κ̃(γ̃ − r̃t) + η̃ǫA,t+1, (18c)

where r̃t denotes the periodic interest rate (e.g., quarter-to quarter for quarterly model),

κ̃, γ̃, η̃, β̃, δ̃, and σ̃ are the structural parameters for the given frequency, and ǫA,t and

ǫK,t are the shocks corresponding to the differentials dBt and dZt, respectively.
21

2. One way of proceeding is to log-linearize the economic model to arrive at a system of

equilibrium dynamics that can be used for estimation. This yields

ln(Ct/Ct−1) = ln β̃ + r̃ft−1 + C0 + ε̃C,t, (19a)

ln(Yt/Yt−1) = ln β̃ + r̃ft−1 + C0 − C2

(
r̃ft−1 − C1

)
+ ε̃Y,t, (19b)

r̃ft = (1− κ̃)r̃ft−1 + κ̃C1 + ε̃r,t, (19c)

where C0 ≡ 1
2
((σ̃/β̃)2+ η̃2)/((1− δ̃+ γ̃)2), C1 ≡ γ̃− δ̃−C0, C2 ≡ (1− δ̃)κ̃/((1− κ̃)γ̃),

ε̃C,t ≡ σ̃

β̃(1− δ̃ + γ̃)
ǫK,t +

η̃

1− δ̃ + γ̃
ǫA,t, (20a)

ε̃Y,t ≡ σ̃

β̃(1− δ̃ + γ̃)
ǫK,t +

η̃

γ̃
ǫA,t, (20b)

ε̃r,t ≡ 1− κ̃

1− δ̃ + γ̃
η̃ǫA,t. (20c)

20The interested reader is referred to the web appendix (cf. Section B) where we present the discrete-time
model, the equilibrium conditions, the log-linear solution, and the equivalent empirical specification.

21We use the mapping κ̃ = 1−e−∆κ, γ̃ = ∆γ, η̃ = ∆η
√

(1− e−2κ∆)/(2κ), β̃ = e−∆ρ, δ̃ = 1−e−∆δ, and

σ̃ = ∆1/2β̃(1− δ̃ + γ̃)σ, in which ∆ = 1/12 for the monthly model, and ∆ = 1/4 for the quarterly model.
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Here, r̃ft denotes the periodic risk-free interest rate.

At the expense of introducing approximation error due to log-linearization, the system (19)

is now linear in a set of reduced-form parameters, which in turn are known functions of

the structural parameters.22 This system can be directly compared to system (15) of the

continuous-time model. While the analytical solution in the continuous-time version implies

that consumption should not respond to shocks to the interest rate, the discrete-time inter-

est residuals (20c) do enter the approximate solution for the consumption residuals (20a).

Another feature of the log-linear approximation is that no endogenous variable appears in

the error term. This is in error, as is known from the exact solution in continuous time. The

path of the interest rate during the course of the month enters in the exact output residual

(16b).

3 Estimation: The MEF approach

In this section, we describe how to estimate the equilibrium system (15) using macro and

financial data. In fact, the system permits the use of standard regression-based methods. We

consider OLS, SUR (to account for cross-equation correlation), instrumental variables (IV,

to address endogeneity issues), and a feasible combination which we label FGLS-SUR-IV and

which appears to be novel.23 Although these methods share the advantages of being easy

to understand and implement, none of them fully corrects for endogeneity in the structural

model. The endogeneity stems from the right-hand side variables in (15) including two

integrals involving the evolution of the auxiliary variable in (17) from t −∆ through t and

so being correlated with both εr,t and εY,t. A standard IV approach is to consider first-

stage regressions of the right-hand side variables on lags and an intercept, then use fitted

values to perform the main regressions. However, the lagged values of the relevant integrals

involving the auxiliary variable r̂s, t − 2∆ ≤ s ≤ t − ∆, may correlate with r̂t−∆, and

hence with εY,t from (16b), although presumably less than without lagging (this is the idea

of the instrumentation). Any such correlation between the error terms and the right-hand

side variables (even when using fitted values) indicates that part of the endogeneity issue

remains.

Hence, we show how structural parameters may be directly estimated using the martin-

gale estimating function (MEF) approach which is efficient and fully corrects the endogeneity

problem. We also show how this approach relates to the generalized method of moments

22The log-linear solution implies ln(Ct/Kt) = ln(1− β̃) + ln(1 − δ̃ + γ̃) + (r̃t − γ̃)/(1− δ̃ + γ̃).
23We show in the web appendix how to view our system as a regression model, how to estimate the

reduced-form parameters by these regression-based methods, and how to obtain the structural parameters
using minimum distance (cf. Section A.1 in the web appendix).
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(GMM). The regression-based approaches serve as useful benchmarks and starting values for

the MEF estimator, which is based on the theory of optimal estimators.

Let φ denote the parameter vector, and mt = mt(φ) the vector of martingale increments

generated by the model, expressed in terms of data and parameters. In this section, we

study the MEF and GMM estimators from a general point of view, but to fix ideas, it is

useful to recall that our specific application has mt = εt = (εC,t, εY,t, εr,t)
⊤ from (16a)-(16c),

and φ = (κ, γ, η, ρ, δ, σ)⊤. Clearly, mt is a martingale difference sequence, and from system

(15) we have that in terms of data and parameters

mt =




ln(Ct/Ct−∆)−
∫ t

t−∆
rfvdv +

(
ρ− 1

2
σ2
)
∆

ln(Yt/Yt−∆)−
∫ t

t−∆
rfvdv +

(
κ+ ρ− 1

2
σ2
)
∆− κγ

∫ t

t−∆
1/(rfv + δ + σ2)dv

+1
2
η2
∫ t

t−∆
1/(rfv + δ + σ2)2dv

rft − (1− e−κ∆)(γ − δ − σ2)− e−κ∆rft−∆


 ,

(21)

where the integrals are approximated by Riemann sums over days between t−∆ and t. More

general versions of the model below give rise to other mt, some with higher dimension.

3.1 From GMM to MEF

The MEF method differs from the generalized method of moments (GMM) of Hansen (1982).

The relevant theory for optimal estimators is based on Godambe and Heyde (1987), and the

dynamic case is treated in Christensen and Sørensen (2008). It is shown that MEF is at least

as efficient as GMM – indeed, strictly more efficient except in the special case where the two

estimators coincide. Hence, it is instructive to start with the well-known GMM, then show

how to modify this appropriately, to see how the MEF method comes about.

Since mt is a martingale difference sequence, we have the conditional moment restrictions

Et−∆ (mt) = 0. The standard GMM approach is to consider instruments, say zt, belonging to

the information set and hence known at time t−∆, so that Et−∆ (zt ⊗mt) = zt⊗Et−∆ (mt) =

0, where ⊗ is the Kronecker product. For example, the instruments could be lagged right-

hand side variables, zt = (1,
∫ t−∆

t−2∆
1/(rfv+δ+σ

2)dv,
∫ t−∆

t−2∆
1/(rfv+δ+σ)

2dv, rft−2∆)
⊤, since these

are all in the information set at t−∆. In particular, it presents no new issue, neither for GMM

nor MEF, that the instrumental variables depend not only on data, but also on parameters,

zt = zt(φ). Defining ht = ht(φ) = zt ⊗ mt, we have that ht is of dimension dimh =

dim z · dimm, or 12 in the AK-Vasicek model with logarithmic utility, where dimm = 3 and

dim z = 4 in the example. To construct the GMM estimator, let for notational convenience

∆ = 1 and define

HT =

T∑

t=1

ht, (22)
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so thatHT/T is the sample average of {ht}. Evidently, HT is a martingale at the true value of

the parameter φ, i.e., ET (HT+1) = HT , because ET (hT+1) = zT+1 ⊗ ET (mT+1) = 0.24 Since

the unconditional expectation E(ht) = 0, it would be natural to choose the estimator for φ

so as to equate the sample analogue HT/T of E(ht) to zero. Typically, dimh > dim φ, so it is

not possible to solve the equation HT = 0 exactly. Instead, the GMM estimator is defined as

the minimizer of the squared norm HT (φ)
⊤WHT (φ), where W is a weight matrix. Optimal

GMM is obtained by using the identity matrix Idim h forW in a first step minimization, then

using the resulting estimator, say φ̂0, to calculate an estimate of V ar(HT )
−1 that is used for

W in the second step minimization. Frequently W = (
∑

t ht(φ̂0)ht(φ̂0)
⊤)−1 is used for the

second step.25 Sometimes, a mean adjustment and/or a Newey and West (1987) correction

is used, the latter for robustness against serial correlation, but both are unnecessary under

the null that mt and hence ht is a martingale difference sequence.

The critical features of GMM that leave room for improvement and hence the MEF

approach are now evident: First, in GMM, the instruments zt enter in the form of a vector,

whereas MEF uses a matrix. Secondly, in GMM, the dimension of HT is the same as or

greater than the number of parameters, whereas MEF specifically uses the same number of

estimating equations and parameters. In short, the optimal estimating equations (those of

the MEF method) are based on matrix-valued rather than vector-valued instruments, and

over-identifying restrictions (dimh > dimφ) are unnecessary for efficiency.

To develop these ideas, note that the first order conditions for the minimization in GMM

are
∂HT (φ)

⊤

∂φ
WHT (φ) = 0, (23)

a set of dim φ equations. Thus, there is the same number of zero conditions as number of

parameters in φ, as it should be. An estimator that is asymptotically equivalent to GMM

may be obtained by solving the dimφ equations

G

T∑

t=1

ht(φ) = 0, (24)

where G is an initial consistent estimate of the dimφ × dimh matrix ∂HT (φ)
⊤/∂φ ·W in

(23). For example, G could be based on the first step GMM estimator, just like W , i.e., the

24For the general case with ∆ = 1/N , say, we may relabel h∆, h2∆, . . . , hS−∆, hS as h1, h2, . . . , hT−1, hT ,
where T = NS and ∆ is the new time unit, then define HT by (22) without change. Thus, Et (mt+∆) = 0
in the original notation is equivalent to Et (mt+1) = 0 in the new, and similarly for ht, i.e., ∆ = 1 is w.l.o.g.

25In this case, T ·W −V ar(HT /
√
T )−1 → 0, a.s., and H⊤

T WHT = (HT /
√
T )⊤(T ·W )(HT /

√
T ) converges

in law to χ2.

16



system is (
∑

t

∂ht(φ̂0)
⊤

∂φ

)(
∑

t

ht(φ̂0)ht(φ̂0)
⊤

)−1∑

t

ht(φ) = 0,

where φ only appears in the last factor. An estimator is obtained by treating G(φ̂0) as

fixed and finding φ that sets the equations exactly equal to zero, and this is asymptotically

equivalent to optimal GMM. In essence, this is a way of computing the optimal GMM

estimator.

It is now apparent that a more flexible estimation approach obtains by not just solving the

equations with a fixed dimφ×dimhmatrixG from the first step (the approach asymptotically

equivalent to optimal GMM), but instead allowing a separate dim φ×dimh matrix each time

period, say, gt, which may depend on data through t − ∆. This is the central idea of the

MEF approach. Thus, there are again dimφ equations, but they now take the more general

form
T∑

t=1

gt(φ̂0)ht(φ) = 0, (25)

instead of G(φ̂0)
∑T

t=1 ht(φ) = 0. Clearly, (25) is a zero-mean martingale for any choice of

weight (or instrument) matrices gt in the information set, since ET (gT+1hT+1) = gT+1ET (hT+1) =

0. The gt may also depend on parameters, and here we may again use initial consistent es-

timates, i.e., all gt may be calculated after the first step estimation.

The question is how to choose {gt} optimally. If they indeed vary across time, the

resulting estimator differs from optimal GMM, since this corresponds to the special case

of constant gt ≡ G(φ̂0). In fact, it is unnecessary to expand mt to ht by introducing the

instruments zt in ht = zt ⊗ mt, since if the conditional moment restrictions Et−1(mt) = 0

are used instead of Et−1(ht) = 0, and in fact zt is needed in the optimal estimator, then zt

will just be part of the optimally chosen gt in the MEF approach (this fact and the form of

the optimal gt follow from the theorem below). Therefore, we leave the problem involving zt

and define the martingale estimating function

MT =
T∑

t=1

wtmt, (26)

clearly a zero-mean martingale for any choice of weight matrices wt, which may depend on

data through t−1. This is the case where ht = mt (no zt is used because the optimal estimator

is the same with or without zt, cf. the theorem below) and thus gt is dimφ× dimm instead

of dimφ × dimh (this is highlighted by writing wt instead of gt). A martingale estimating

function (or MEF) is given by specifying wt as a series of dimφ × dimm matrices. At the
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true parameter value, E(MT ) = 0, and φ is estimated by solving the martingale estimating

equation

MT (φ) = 0. (27)

Recall again that the conditions leading to this estimator are

Et−1 (mt) = 0, (28)

which we refer to as the conditional moment restrictions based on mt. Before stating the

main results, we define formally the GMM and MEF procedures.

Definition 3.1 (a) For given conditional moment restrictions based on mt, a GMM esti-

mator is an estimator obtained as follows: (i) Select a vector of instruments zt belonging

to the information set at t− 1, and let ht = ht(φ) = zt ⊗mt, with dim z sufficiently high

for dimh = dim z · dimm ≥ dimφ; (ii) select a positive definite dimh × dimh weight

matrix W ; (iii) let HT =
T∑
t=1

ht; (iv) then the GMM estimator is the minimizer with

respect to φ of the squared norm HT (φ)
⊤WHT (φ).

(b) For given conditional moment restrictions and instruments, the optimal GMM estimator

is obtained as follows: (i) Use the identity matrix Idimh forW and compute the associated

GMM estimator φ̂0; (ii) then the optimal GMM estimator is the GMM estimator using

W = (
∑

t ht(φ̂0)ht(φ̂0)
⊤)−1.

(c) For given conditional moment restrictions, an MEF estimator is an estimator obtained

as follows: (i) Select matrices of instruments wt belonging to the information set at t−1,

of dimension dim φ× dimm; (ii) let MT =
∑T

t=1wtmt; (iii) then the MEF estimator is

the solution with respect to φ of the system of dim φ equations given by MT = 0.

(d) For given conditional moment restrictions, the optimal MEF estimator is obtained as

follows: (i) Let

wt = ψ⊤
t (Ψt)

−1, (29)

where Ψt is the conditional variance of the vector martingale increment,

Ψt = V art−1(mt) = Et−1(mtm
⊤
t ), (30)

and ψt the conditional mean of its parameter derivative

ψt = Et−1

(
∂mt

∂φ⊤

)
; (31)

(ii) then the optimal MEF estimator is the MEF estimator using instruments wt =

ψ⊤
t (Ψt)

−1.
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The conditioning on information available through t−1 (more generally, t−∆) in (30) and

(31) requires integrating out with respect to the evolution of the interest rate appearing in the

integrals from t−∆ through t in (21). This leaves MEF computationally more demanding

than GMM and the regression-based approaches, but it does circumvent the endogeneity

problem in the DSGE model.

The weights (or instruments) (29) yield the optimal martingale estimating function,

across choice of weights wt. The optimal weights do depend on parameters, i.e., the martin-

gale estimate φ̂ solves a system of the form
∑

t wt(φ)mt(φ) = 0, where the solution accounts

for the parameter dependence of both wt and mt. Alternatively, an asymptotically equiv-

alent estimator may be obtained by using weights evaluated at initial consistent estimates

φ̂0, e.g., from GMM. In this case, φ̂ is calculated as the solution with respect to φ of the

system
∑

t wt(φ̂0)mt(φ) = 0. It is well understood that this does not change the asymptotic

properties, and so the proof of the following theorem uses the simpler form of the estimating

function, with wt not explicitly depending on parameters in the derivation.

For convenience and comparison when stating our main results, we include in Theo-

rem 3.2 (a) and (b) the standard properties of GMM, which follow from Hansen (1982).

Proof of the remaining items (c) through (g) are provided in Appendix 7.2. The setting is

given by Definition 3.1, along with standard regularity conditions used in the GMM liter-

ature, in particular, ht, mt, and zt+1 depend only on data through t, the sample averages

T−1
∑T

t=1 ∂h
⊤
t /∂φ, T

−1
∑T

t=1 hth
⊤
t , and T−1

∑T
t=1 ψ

⊤
t (Ψt)

−1ψt in the statement of the the-

orem converge either almost surely or in probability to deterministic limits, the latter two

limits being invertible matrices, the model is uniquely identified in that E(MT ) is zero only

at the true φ, and the observed series are stationary and ergodic, which are standard as-

sumptions for interest rates and the growth rates of consumption and output.

Theorem 3.2 (a) The optimal GMM estmator is consistent and asymptotically normal,

√
T (φ̂GMM − φ) → N (0, VGMM), (32)

with asymptotic variance-covariance matrix given by

VGMM =

(
E

(
∂ht
∂φ⊤

)⊤

V ar(ht)
−1E

(
∂ht
∂φ⊤

))−1

, (33)

consistently estimated by

V̂GMM =



(
1

T

T∑

t=1

∂h⊤t
∂φ

)(
1

T

T∑

t=1

hth
⊤
t

)−1(
1

T

T∑

t=1

∂ht
∂φ⊤

)


−1

. (34)
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(b) For given conditional moment restrictions and instruments, the optimal GMM estimator

is asymptotically at least as efficient as any other GMM estimator (using different W ).

(c) The optimal MEF estimator is consistent and asymptotically normal,

√
T (φ̂− φ) → N (0, VMEF ), (35)

with asymptotic variance-covariance matrix given by

VMEF =
(
E(ψ⊤

t (Ψt)
−1ψt)

)−1
, (36)

consistently estimated by the inverse sample average

V̂MEF =

(
1

T

T∑

t=1

ψ⊤
t (Ψt)

−1ψt

)−1

. (37)

(d) For given conditional moment restrictions, the optimal MEF estimator is asymptotically

at least as efficient as any other MEF estimator (using different {wt}).

(e) For given conditional moment restrictions, the optimal MEF estimator is asymptotically

at least as efficient as any GMM estimator, VMEF ≤ VGMM , regardless how the instru-

ments zt are chosen in the GMM. Furthermore, unless the two estimators coincide, the

optimal MEF estimator is strictly more efficient than GMM,

VMEF < VGMM . (38)

(f) The event that the optimal MEF estimator and the GMM estimator coincide occurs

only in two special cases: (i) The number of parameters equals the number of moment

conditions, dimφ = dimm, and the moment conditions satisfy the condition

mt(φ) = ψ⊤
t (Ψt)

−1mt(φ); (39)

(ii) The number of parameters exceeds the number of moment conditions, dimφ > dimm,

and the product of the conditional expected parameter derivative and conditional variance

of the moment conditions has special sparse structure, with

ψ⊤
t (Ψt)

−1 = zt ⊗ Idimm, (40)

where zt is the vector of instruments used in GMM, i.e., the GMM is based on ht =

zt ⊗mt, and dimφ = dim z · dimm.
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(g) The optimal MEF estimator based on the conditional moment restrictions Et−1 (mt) = 0

coincides with the optimal MEF estimator based on the expanded set of moment condi-

tions Et−1 (ht) = 0, with ht = zt ⊗ mt and where zt belongs to the information set at

t− 1.

Proof. cf. Appendix 7.2.

In GMM, instruments zt are usually seeked out in order to obtain desirable properties,

but there is no unique way to search for good instruments, and any choice will expand the

dimension of ht. From Theorem 3.2 (g), this process is bypassed entirely in the MEF. The

estimator is unaltered by choice of zt. To understand this correctly, note that if zt is in the

information set at t− 1, it is available to the MEF, which then will involve zt if and only if

it is required for optimality.

From Theorem 3.2 (e), MEF is generically more efficient than GMM, based on the same

information set and regularity conditions. Indeed, the two cases in Theorem 3.2 (f) where the

two estimators coincide are both very special. In many cases, researchers will be interested

in a certain set of conditional moment restrictions based on mt and a certain parameter

vector φ, but there is no particular reason that the two should be of the same dimension.

Even if they were, the condition in (39) is obviously highly special and would probably

not be satisfied in any practical application. Further, when the number of parameters and

conditional moment restrictions differ, it is at least as likely that the latter is greatest, by

Theorem 3.2 again making MEF strictly more efficient than GMM. Finally, if the number of

parameters happens to be highest, in many cases it would nevertheless not equal an integer

times the number of moment conditions. Even if it did, there is no reason that the left-

hand side matrix in (40) should take the sparse form indicated. Certainly, none of these

very specialized conditions is satisfied in our application to the AK-Vasicek model, where

we calculate ψ⊤
t (Ψt)

−1 explicitly.

Although the forms of the optimal MEF weights (29) and the resulting optimal variance

VMEF in (36) are derived here from the theory of estimating functions, based on Godambe

and Heyde (1987), and used to improve efficiency of MEF based on mt relative to GMM

based on ht = zt ⊗ mt, they also appear in the GMM literature on efficiency bounds and

optimal instruments that has followed Hansen (1982). Thus, efficiency bounds are derived

by Hansen (1985, Lemma 4.3) and Hansen, Heaton, and Ogaki (1988, Theorem 4.2) for

general cases where MT =
∑T

t=1 wtmt is zero-mean but not necessarily a martingale, and the

weights (or instruments) wt are dimφ × dimm matrices, as in our case. In the martingale

case, their bounds coincide with our VMEF . However, these authors do not consider the case

that wt may depend on φ, and when seeking estimators achieving the efficiency bound in the

restricted class, they further assume conditional homoskedasticity, i.e., the conditional vari-
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ance is constant across time, Ψt ≡ Ψ, and ψt at the true parameter is known. The latter is

no problem for deriving the bound, which is the main focus of these papers, but for a feasible

efficient estimator, an initial consistent estimate must be plugged in. The conditional ho-

moskedasticity assumption is restrictive, and we relax this, i.e., our VMEF is a semiparametric

efficiency bound in a wider class of models (including conditional heteroskedasticity).

The relation between the results from the efficiency bound and optimal instrument lit-

erature on the one hand and standard GMM the way we have defined it on the other hand

is not completely direct. We follow Hansen (1982) and consider GMM as the procedure of

possibly expanding the moments from mt to ht using vector-valued instruments zt, then min-

imizing the relevant norm, rather than looking at time-varying matrix-valued instruments

wt.
26 We believe this is in accordance with general practice among applied researchers in

macroeconomics and finance. Our results then show that this standard form of GMM is

inefficient relative to MEF, which always reaches the general efficiency bound (36). Other

estimators reaching the corresponding bound in restricted cases (e.g., imposing conditional

homoskedasticity, Ψt ≡ Ψ) are the other type of GMM estimators, considered in the ef-

ficiency bound and optimal instrument literature, with matrix instruments. Of course, by

Theorem 3.2 (e), in such cases these estimators coincide with optimal MEF if the restrictions

are valid, otherwise MEF is again strictly more efficient.27

Part of the reason for the discrepancy between the literatures on estimating equations

and optimal estimators on the one hand, and the literature on GMM efficiency bounds and

optimal instruments on the other, is that the latter literature seeks semiparametric bounds,

for cases where only (conditional) moment conditions are assumed, while the rest of the

model is left unspecified (or nonparametrically specified). In such cases, there may not be

sufficient information to calculate ψt and Ψt for the concrete construction of an efficient

estimator, although these objects (or special cases of these, like Ψt = Ψ) enter the received

expression for the theoretical bound. In contrast, we have a fully specified model, so we may

calculate ψt and Ψt explicitly, and thus construct the optimal MEF estimator. Indeed, Ψt

26The analysis in Hansen (1982) does involve a dimφ × dimm matrix, aN in Hansen’s notation (N
corresponds to our T ), but this is constant through time and corresponds to G in our discussion before
Definition 3.1, see (24). Another paper in this (optimal GMM) tradition is Bates and White (1993).

27The form of the weights (29) also resembles that in Newey (1990), but he considers the i.i.d. cross-section
case, where the conditioning in ψt is on i.i.d. regressors, not the past of a time series as in our case, and
he assumes conditional homoskedasticity, Ψt ≡ Ψ, too. Robinson (1991) allows some restricted forms of
serial dependence, but similarly imposes conditional homoskedasticity. Kuersteiner (2001) considers related
estimators for linear time series (ARMA) models. In the cross-section case, Chamberlain (1987) uses optimal
GMM on an expanding set of moment conditions to approach the efficiency bound. By applying Theorem
3.2 to the special case of a cross-section (including regressors in the information set), our results generalize
those available for this case to cover conditional (on regressors) heteroskedasticity, and efficiency is achived
by a given estimator (optimal MEF), not just approached in the limit by a sequence of estimators.
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is time-varying in the DSGE model, so this is a case of conditional heteroskedasticity, and

our estimator is strictly more efficient than any from the literature. We now proceed to this

construction.

3.2 MEF with three conditional moment restrictions

We start from the martingale difference sequence in (21), where we approximate the in-

tegrals by summation over days between t − ∆ and t. This allows computing mt(φ) at

trial values of the structural parameters φ = (κ, γ, η, ρ, δ, σ)⊤. To construct the MEF

(27), we need the weights wt in (29), which depend on the conditional mean of the pa-

rameter derivatives, ψt, and the conditional variance, Ψt, of mt. We have the condi-

tional variances Ψt,11 = σ2∆, Ψt,22 = η2Et−∆(
∫ t

t−∆
1/(rfv + δ + σ2)2dv) + σ2∆, and Ψt,33 =

η2(1 − e−2κ∆)/(2κ). Similarly, the conditional covariances are Ψt,12 = σ2∆, Ψt,13 = 0, and

Ψt,23 = η2e−κ∆Et−∆

(
(
∫ t

t−∆
1/(rfv + δ + σ2)dBv)(

∫ t

t−∆
eκ(v−(t−∆))dBv)

)
. Since analytical ex-

pressions are not available, we use Euler approximations for Ψt,22 and Ψt,23,

Ψt =




σ2∆ σ2∆ 0

σ2∆ σ2∆+ η2∆/(rft−∆ + δ + σ2)2 η2e−κ∆∆/(rft−∆ + δ + σ2)

0 η2e−κ∆∆/(rft−∆ + δ + σ2) 1
2
η2(1− e−2κ∆)/κ


 . (41)

Evidently, Ψt depends on rft−∆ and so is time-varying, i.e., this is a case of conditional

heteroskedasticity, and so the MEF estimator we construct is strictly more efficient than

estimators based on conditional homoskedasticity as in the existing efficiency bound and

optimal instrument literature. Note that consistency and asymptotic variance are unaffected

by our approximations because these only affect the weights (29).28 For the martingale

increments (21), the parameter derivatives (∂mt/∂φ
⊤)⊤ are given by




0 ∆− γ
∫ t

t−∆
1/(rfv + δ + σ2)dv −∆e−κ∆γ +∆e−κ∆rft−∆

0 −κ
∫ t

t−∆
1/(rfv + δ + σ2)dv −(1 − e−κ∆)

0 η
∫ t

t−∆
1/(rfv + δ + σ2)2dv 0

∆ ∆ 0

0 κγ
∫ t

t−∆
1/(rfv + δ + σ2)2dv − η2

∫ t

t−∆
1/(rfv + δ + σ2)3dv (1− e−κ∆)

−σ∆ −σ∆+ 2σκγ
∫ t

t−∆
1/(rfv + δ + σ2)2dv

−2ση2
∫ t

t−∆
1/(rfv + δ + σ2)3dv

2σ(1− e−κ∆)




.

(42)

Now apply conditional expectation to get ψt = Et−∆(∂mt/∂φ
⊤), interchange the order of

integration in (42), and use the deterministic Taylor expansion (e.g., Äıt-Sahalia, 2008),

28Unaffected asymptotic variance requires that the effect of the Euler approximation wears off asymptot-
ically, otherwise the expression may be adjusted accordingly.
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which reads

E(g(rs)|ru) =
k∑

i=0

∆i

i!
Aig(ru) +O(∆k+1), s ≥ u (43)

where A is the infinitesimal generator in the Vasicek model, Ag(x) = κ(γ−x)g′(x)+ 1
2
η2g′′(x).

The function g(·), for example g(x) = 1/x in ψt,21, must be sufficiently smooth. For example,

a first-order Taylor expansion, k = 1, yields the approximation29

∫ t

t−∆

Et−∆(1/rv)dv =

∫ t

t−∆

Et−∆(1/rv)dv

≈
∫ t

t−∆

(
1/rt−∆ + (v − (t−∆))

(
−κ(γ − rt−∆)/r

2
t−∆ + η2/r3t−∆

))
dv

= ∆/rt−∆ − (t−∆)
(
−κ(γ − rt−∆)/r

2
t−∆ + η2/r3t−∆

)
∆

+1
2
(t2 − (t−∆)2)

(
−κ(γ − rt−∆)/r

2
t−∆ + η2/r3t−∆

)

= ∆/rt−∆ −
(
κ(γ − rt−∆)/r

2
t−∆ − η2/r3t−∆

)
1
2
∆2,

in which rv = rfv + δ+ σ2. Thus expanding all terms involving integrals in (42), we have the

transpose of the conditional mean parameter derivative ψ⊤
t given explicitly as




0 ∆− γ
(
∆/rt−∆ −

(
κ(γ − rt−∆)/r

2
t−∆ − η2/r3t−∆

)
1
2
∆2
)

∆e−κ∆(rft−∆ − γ)
0 −κ

(
∆/rt−∆ −

(
κ(γ − rt−∆)/r

2
t−∆ − η2/r3t−∆

)
1
2
∆2
)

−(1− e−κ∆)
0 η

(
∆/r2t−∆ −

(
2κ(γ − rt−∆)/r

3
t−∆ − 3η2/r4t−∆

)
1
2
∆2
)

0
∆ ∆ 0

0
κγ
(
∆/r2t−∆ −

(
2κ(γ − rt−∆)/r

3
t−∆ − 3η2/r4t−∆

)
1
2
∆2
)

−η2
(
∆/r3t−∆ −

(
3κ(γ − rt−∆)/r

4
t−∆ − 6η2/r5t−∆

)
1
2
∆2
) (1− e−κ∆)

−σ∆ −σ∆+ 2σκγ
(
∆/r2t−∆ −

(
2κ(γ − rt−∆)/r

3
t−∆ − 3η2/r4t−∆

)
1
2
∆2
)

−2ση2
(
∆/r3t−∆ −

(
3κ(γ − rt−∆)/r

4
t−∆ − 6η2/r5t−∆

)
1
2
∆2
) 2σ(1− e−κ∆)




,

(44)

in which, again, rt−∆ = rft−∆ + δ + σ2. This completes the construction of the optimal

martingale estimating function MT =
∑

t ψ
⊤
t (Ψt)

−1mt. The condition MT (φ) = 0 involves

the same number of equations and unknowns, and is solved exactly for the optimal MEF

estimator φ̂. The asymptotic distribution is given by (35)-(36). Again, this is a case of a

strict efficiency gain, relative to estimators from the literature.

3.3 MEF extensions

So far, we have considered the case where all variables in the system are observable, albeit

using some mixed-frequency properties of the data. The MEF approach can be generalized

29A simpler Euler approximation would neglect all second order terms. The Taylor expansion shown
improves identification as more structural parameters appear. The relevance of these terms, however, will
be model-specific. For our baseline model the empirical results based on ∆2 = 0 are similar.
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to the empirically relevant cases of latent variables (e.g., unobserved real interest rates,

stochastic discount rates, stochastic volatility, regime-switching models, etc.) and of mixed-

frequency estimation with a different frequency for each series. To illustrate, we consider

four extensions, set in the context of the AK-Vasicek model: (i) The daily interest rate rt is

latent and cannot be backed out from data – there is no daily observed series proxying for

this variable; (ii) the interest rate rt is subject to regimes with high and low volatility; (iii)

The interest rate rt is subject to stochastic volatility; (iv) output Yt is observed at a lower

(say, quarterly) frequency than consumption Ct (say, monthly).

Cases (i) to (iii) serve to illustrate our approach to latent variables (the interest rates,

the volatility regime, respectively the stochastic volatility are latent). Cases (i) and (iv)

illustrate our handling of truly missing data (interest rates, respectively parts of the output

series). Case (i) is motivated by the concern that expected inflation and hence the real rate

of interest should be treated as missing in some applications. An interesting feature of the

approach is that we may infer the latent series and conduct a model specification check.

Cases (ii) and (iii) show how our approach can be applied in cases when the financial data

display patterns of stochastic volatility and/or regime switching. Case (iv) reinforces our

use of data sampled at mixed frequencies. Output may be proxied by industrial production

at the monthly frequency (see below), but it may be of interest to compare with results

using actual output, available only quarterly. In the latter case, consumption need not be

aggregated to quarterly frequency.

3.3.1 Latent interest rate

For the latent interest rate generalization, case (i), note that in the MEF approach with

complete data the condition E (MT ) = 0 is satisfied at the true parameter value, whereMT =
∑T

t=1wtmt. In the incomplete data setting, define Ft as the information set generated by

{Cs, Ys}ts=1 (but not the missing interest rates). By E (MT ) = 0 and iterated expectations, we

have E (
∑

twtE (mt|Ft−1)) = 0, as the weights wt depend only on information through t−1.

Thus, in the estimation, we may replace the moments mt by their conditional expectations

given Ft−1. For example, for our application to the stochastic AK-Vasicek model, we replace

the integrals involving the daily interest rate by conditional expectations given monthly

or quarterly interest rate proxies, based on the information set. In theory, this involves

an efficiency loss, since the resulting procedure is formally a variant of standard GMM,

i.e., the basis of the approach is an unconditional zero mean condition, not a conditional

one. However, we show in the sequel that the approach works surprisingly well in cases we

consider.
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The new moments for estimation, say, m∗
t = E (mt|Ft−∆), are given by




ln(Ct/Ct−∆)− E
(∫ t

t−∆
rvdv|r∗t−∆

)
+
(
ρ+ δ + 1

2
σ2
)
∆

ln(Yt/Yt−∆) +
(
κ+ ρ+ 1

2
σ2 + δ

)
∆

−E
(∫ t

t−∆
rvdv + κγ

∫ t

t−∆
1/rvdv − 1

2
η2
∫ t

t−∆
1/r2vdv|r∗t−∆

)

r∗t − (1− e−κ∆)γ − e−κ∆r∗t−∆



, (45)

where r∗t−∆ is an interest rate proxy based on consumption and income data through t−∆.

Here, ∆ = 1/4 is used in the empirical work. From earlier, the model implies Kt = Yt/rt

and Ct = ρKt, so a model-consistent proxy at the macro frequency is r∗t = ρYt/Ct, in which

Yt/Ct is approximated by the ratio of quarterly observed income and consumption data.30

One possibility for implementation of the conditional expectations of the integrals in

(45), i.e., integrating out the latent interest rate process rv from the terms E
(
·|r∗t−∆

)
, is

simulation. We refer to the resulting procedure as Simulated MEF, or SMEF. The SMEF

approach applies generally to models involving latent variables. Thus, each integral involves

drawing a path for rv from drv = κ(γ − rv)dv+ ηdBv using an Euler scheme from v = t−∆

to t, starting at the proxy value r∗t−∆, and the expectation is formed by averaging over paths.

The interest rate (or latent state variable) is similarly integrated out of wt = ψ⊤
t (Ψt)

−1, or,

in the specific case, rt−∆ is simply replaced by its proxy r∗t−∆ in the expressions (44) and (41)

for ψ⊤
t and Ψt. In the iterative solution of the estimating equation

∑
t ψ

⊤
t (Ψt)

−1m∗
t = 0, the

parameter dependence (in our model, through ρ) of the implied state variables is accounted

for.

3.3.2 Regime-switching

In this section, we incorporate a regime-switching spot rate volatility process into our baseline

AK-Vasicek specification, case (ii). In particular, we specify µ(rt) = κ(γ−rt) and η(rt) = ηt,

where κ > 0 is the speed and γ the target rate of mean reversion, and ηt a continuous-time

Markov process with state space Θ ≡ {ηh, ηl}, where ηh > ηl, and

dηt = (ηl − ηh)dq1,t + (ηh − ηl)dq2,t.

The Poisson process q1,t counts how often the process switches from the high volatility level

ηh to the low level ηl, and q2,t is a Poisson processes counting the switches from the low to

the high regime, only one process being active at a time. We use state-dependent arrival

rates φ1(ηt) = φhl for periods where ηt = ηh and φ1(ηt) = 0 otherwise, φ2(ηt) = φlh for

ηt = ηl and φ2(ηt) = 0 otherwise. This specification is inspired by financial time series

30To retain information, the smoothing in (45) is applied only to terms involving the latent interest rate,
and rt in the third moment is smoothed using E (·|Ft) rather than E (·|Ft−∆).
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exhibiting periods of high and low volatility. Liu, Waggoner, and Zha (2011) consider a

related, discrete-time, regime-switching DSGE model and introduce regime-switches in the

standard deviation of the interest rate (among other shocks).31 One challenge in discrete-

time models is the solution of the regime-switching model (cf. Foerster, Rubio-Ramı́rez,

Waggoner, and Zha, 2015), while in the present approach the economic model can be solved

analytically.

Similarly to the case of latent interest rates, our approach for the regime-switching model

is to derive moments for estimation, say, m∗
t = E (mt|Ft−∆), given by (see web appendix

Section C.1)



ln(Ct/Ct−∆)−
∫ t

t−∆
rfvdv +

(
ρ− 1

2
σ2
)
∆

ln(Yt/Yt−∆)−
∫ t

t−∆
rfvdv +

(
κ+ ρ− 1

2
σ2
)
∆− κγ

∫ t

t−∆
1/(rfv + δ + σ2)dv

+E
(

1
2

∫ t

t−∆
η2v/(r

f
v + δ + σ2)2dv|Ft−∆

)

rft − (1− e−κ∆)(γ − δ − σ2)− e−κ∆rft−∆



. (46)

One possibility for implementation of the conditional expectation of the integral in (46), i.e.,

integrating out the latent volatility process ηv from the term E
(

1
2

∫ t

t−∆
η2v/(r

f
v + δ + σ2)2dv|Ft−∆

)
,

is simulation. This is the idea of the SMEF approach. For an off-the-shelf implementation,

because this is not the main focus of the paper, we follow an alternative route and use

an Euler approximation of the integral, complementing the MEF approach with a filtering

method to filter the latent volatility state from the data at time t. The Euler approximation

of the integral is

E

(
1
2

∫ t

t−∆

η2v/(r
f
v + δ + σ2)2dv|Ft−∆

)
≈ 1

2
∆(η∗t−∆)

2/(rft−∆ + δ + σ2)2, (47)

where η∗t−∆ = E(ηt−∆|Ft−∆) is the filtered volatility state based on interest rate data through

t − ∆. We use the Hamilton (1989) filter to draw inference on the latent regime, thus

producing the probability that the latent volatility process is in a given state, say, the high,

at any given point in time, p(ηt = ηh|Ft−∆). This probability is used to approximate the

expectation in (47), and therefore (46), either by taking the high-volatility state, η∗t−∆ = ηh,

whenever the probability p(ηt = ηh|Ft−∆) > 0.5 (used here), or using the probability to

calculate an expected value in between of ηl and ηh.
32

31Liu, Waggoner, and Zha (2011) implement the Sims, Waggoner, and Zha (2008) algorithm on the log-
linearized equilibrium conditions, and find Bayesian estimates (modes of the posterior distributions) using
quarterly data for the high and low volatility regimes of 0.004 and 0.001, respectively.

32We use the likelihood of the corresponding discrete-time Ornstein-Uhlenbeck process for the interest rate
in the Hamilton filter. This filter is run alongside the MEF approach, and provides the filtered interest rate
volatility states depending, among others, on the regime-switching parameters ηh, ηl, φlh and φhl. In web
appendix Section A.3 we derive the transition probability matrix for the continuous-time Markov chain of
the regime-switching model and, conversely, show how to back out the instantaneous transition rates of the
Poisson process from any given probability matrix.
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3.3.3 Stochastic volatility

Following Andersen and Lund (1997) we incorporate stochastic volatility into our baseline

AK-Vasicek specification, case (iii). In particular, we specify µ(rt) = κ1(γ1− rt) and η(rt) =

ηt, where κ1 > 0 is the speed and γ1 the target rate of mean reversion, and ηt the time-varying

stochastic volatility (SV) process following

d log(η2t ) = κ2(γ2 − log(η2t ))dt+ ξdWt.

Here, κ2 > 0 is the speed and γ2 the target rate of mean reversion in (log-)volatility, the value

of ξ governs its variability (the volatility-of-volatility term), and Wt is an independent Brow-

nian motion process. Some evidence of stochastic volatility in (discrete-time) DSGE mod-

els has been documented by Fernández-Villaverde, Guerrón-Quintana, and Rubio-Ramı́rez

(2015). Below, we show how the continuous-time approach and the MEF method can deal

with the estimation of such models and how high-frequency data help proxying the latent

volatility process.

Similarly to the prior extensions of the baseline MEF method, our approach is to derive

moments for estimation, say, m∗
t = E (mt|Ft−∆), given by (see web appendix Section C.2)




ln(Ct/Ct−∆)−
∫ t

t−∆
rfvdv +

(
ρ− 1

2
σ2
)
∆

ln(Yt/Yt−∆)−
∫ t

t−∆
rfvdv +

(
κ1 + ρ− 1

2
σ2
)
∆− κ1γ1

∫ t

t−∆
1/(rfv + δ + σ2)dv

+1
2
E
(∫ t

t−∆
η2v/(r

f
v + δ + σ2)2dv|Ft−∆

)

rft − (1− e−κ1∆)(γ1 − δ − σ2)− e−κ1∆rft−∆

2 log(η∗t )− (1− e−κ2∆)γ2 − e−κ2∆2 log(η∗t−∆)



, (48)

where η∗t−∆ is an interest rate volatility proxy based on interest rate data through t − ∆.

Thus, we now use four moments, instead of three. One possibility for implementation of the

conditional expectation of the integral in (48) is simulation, which is the idea of the SMEF

approach. For ease of implementation, we use an Euler approximation of the expectation

E (·|Ft−∆) in E
(∫ t

t−∆
η2v/(r

f
v + δ + σ2)2dv|Ft−∆

)
and evaluate the moments by using the

volatility proxy series. We use the realized volatility estimate based on daily interest rate

data, at either the monthly (∆ = 1/12) or quarterly frequency (∆ = 1/4), such that

η∗t =

√√√√ 1

∆

P−1∑

i=1

(rft−∆+(i+1)∆/P − rft−∆+i∆/P )
2,

where P is the number of days in the period as in Section 2.5. The high-frequency availability

of financial data thus provides the proxy at the relevant monthly and quarterly frequency,

with which (48) can be estimated at either frequency. The use of daily data to assess volatility

over longer intervals dates back to Merton (1980) and French, Schwert, and Stambaugh
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(1987). Our use of the realized volatility approach is inspired by Bollerslev and Zhou (2002).33

We use the volatility proxy η∗t in both (48) and the corresponding ψt and Ψt matrices.

3.3.4 Mixed frequency

The mixed frequency extension, case (iv), where consumption is available on a monthly basis

and output only quarterly is slightly different. Here, a complete (monthly) output proxy

series Y ∗
t is simply constructed recursively by letting Y ∗

t = Yt in the (quarterly) periods

where output data are available, and

Y ∗
t = exp

(
ln(Y ∗

t−∆) +

∫ t

t−∆

rvdv −
(
κ+ ρ+ δ + 1

2
σ2
)
∆+ κγ

∫ t

t−∆

1/rvdv − 1
2
η2
∫ t

t−∆

1/r2vdv

)

in the intra-quarter periods when output is missing. Here, rv = rfv + δ + σ2, using observed

daily rfv . This is model consistent prediction, not simulation. In particular, the resulting

proxy series Y ∗
t depends on the parameters. The proxy series is now substituted for Yt

in the original estimating equation
∑

twtmt = 0. We refer to this procedure as mixed-

frequency MEF, or MF-MEF. When solving for the parameter estimates, the dependence of

the constructed output proxy series on trial parameter values is again accounted for.

Both generalized approaches, SMEF and MF-MEF, are akin to filtering. Thus, in the

presence of latent variables, cases (i) through (iii), SMEF recasts mt in the estimating equa-

tion in terms of a set of conditional expectations or filtered predictions, given the information

actually available (Euler-approximations may bypass simulations). For mixed-frequency es-

timation, case (iv), MF-MEF replaces missing data by conditional predictions given the

actual observations. In both cases, standard errors may be calculated using the bootstrap.

4 Simulation Study

To assess the estimation methods from the previous section we run a simulation experiment.

We first detail the set-up of our analysis. As in the previous section, our illustration is based

on the AK-Vasicek model. In the text below we focus on the case with observable variables,

using three conditional moment restrictions for estimation. In Section D of the web appendix

we provide additional simulation evidence with discussion of and results for MEF extensions

to the cases of latent variables and mixed frequency data, time invariance, the benefits of

high-frequency data, and the comparison to discrete time. Several additional appendix tables

33The estimation of volatility from high-frequency financial data has attracted immense attention, see,
e.g., Andersen and Bollerslev (1998), Barndorff-Nielsen and Shephard (2002), and Zhang, Mykland, and
Aı̈t-Sahalia (2005). As sampling frequency increases, realized volatility under wide conditions converges to

integrated volatility, (η∗t )
2 →

∫ t

t−∆
η2vdv as P → ∞.
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that we refer to below, including results using five conditional moment restrictions (based

on both first and second order moments of the model residuals), are available in Section E

of the web appendix.

4.1 Set-up

We simulate 25 years of both monthly and quarterly data from the model. We use simple

Euler approximations to the differential equations in (13). The step length of the Brownian

terms is taken as 1/3000. This corresponds to dividing each of the 12 months of the year

into 25 days, each in turn consisting of 10 periods.

There are two further computational issues when simulating from the model: Obtaining

the integrals involving the interest rate and initialization of the simulations. Concerning the

first issue, we obtain the monthly integrals over the interest rate, denoted with
∫ t

t−∆
g(rv)dv

where ∆ = 1/12 (see Section 2.5), by taking the average of the functions g(rv) over the 25

simulated days per month. For example,
∫ t

t−∆
1/(rfv + δ+ σ2)dv for the monthly simulations

is approximated by (
∑25

i=1 1/(rt−∆+i∆/25 + δ + σ2))∆/25. For the quarterly simulated data

we use a similar approximation, but now over the 75 days in the Euler approximation.

Concerning the second issue, we normalize initial output to unity and initialize the other

variables consistently with our model: lnY0 = 0, r0 = γ, and lnC0 = ln(ρY0/r0).

We generate 1,000 data sets and estimate the parameters according to the approaches

of Section 3. In particular, we report the parameter estimates for the OLS, FGLS-SUR-IV,

GMM, and MEF methods. In the first two cases, we use the minimum distance approach to

get the structural parameters from the reduced form estimates. We choose DGP parameter

values in a way roughly corresponding to empirical estimates obtained in Section 5.2 below.

In particular, we use κ = 0.2, γ = 0.1, η = 0.01, ρ = 0.03, δ = 0.05, and σ = 0.02 (see

column DGP in Table 1).34 In the web appendix, we report the sensitivity of our estimation

methods to different DGP values (cf. Table E1).

4.2 Simulation results: MEF with three conditional moment re-

strictions

[insert Table 1]

Table 1 provides the results of the simulation study. In the first column we list the parameter

values as they are used in the data generating process (DGP), in columns 2 through 5 the

34This corresponds to κ̃ = 0.0165, γ̃ = 0.0083, η̃ = 0.0002, β̃ = 0.9975, δ̃ = 0.0042, and σ̃ = 0.0058
for the discrete-time model at monthly frequency with ∆ = 1/12, and κ̃ = 0.0488, γ̃ = 0.025, η̃ = 0.0012,
β̃ = 0.9925, δ̃ = 0.0124, and σ̃ = 0.0101 for the discrete-time model at quarterly frequency with ∆ = 1/4.
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estimates obtained from the simulated monthly data, and in columns 6-9 the estimates

from the quarterly data. For our four estimation methods we provide the median estimate

of each parameter, and below the interquartile range of the 1,000 estimates. Not all six

structural parameters are identified in the regression-based estimation methods, when not

exploiting second moments (in particular, the residual variances of εC,t and εr,t). In fact,

five parameter combinations are identified, so one possibility is to fix one parameter at the

outset and estimate the remaining five. There is some choice regarding which parameter to

set, since the two combinations ρ− 1
2
σ2 and δ+σ2 are identified, i.e., either ρ, δ, or σ2 could

be restricted. We choose to set δ to the DGP value of 0.05, which economically is interpreted

as depreciation of physical capital of 5 percent per year, in the regression-based approaches.

The same identification issue occurs for the GMM when the standard lagged right-hand side

variables are used as instruments and no higher order moments are used. Also here we fix δ

at the outset to the known DGP value of 0.05.

Overall, while simple OLS, which ignores estimation problems such as contemporane-

ous cross-equation correlation of errors and endogeneity of right-hand side variables, has

some trouble identifying the structural parameters, the FGLS-SUR-IV, GMM, and MEF

approaches produce estimates of γ, η and ρ that are remarkably close to the values in the

DGP. Without exploiting further moments, σ seems to be only weakly identified using GMM,

as reflected by the large inter-quartile range, and generates heavily biased point estimates

in the regression-based approaches. In the MEF approach, σ is already identified from con-

sidering only three moment conditions. Here, the identification of all structural parameters,

including δ, works through the optimally chosen weight (or instrument) matrices involv-

ing the conditional mean parameter derivatives and conditional variances of the martingale

increments. Similar results hold for both monthly and quarterly data.

The mean-reversion parameter κ of the Vasicek specification is hard to estimate. Here, a

value 0.2 is used in the DGP, while the median estimates are in the range from 0.30 to 0.35

using monthly data, and only slightly better in quarterly data. This upward bias in the mean-

reversion parameter estimate is well established (see Tang and Chen, 2009; Wang, Phillips,

and Yu, 2011). In particular, for values of κ close to zero, i.e., a near unit root situation

typical of many financial time series (Yu, 2012), a bias correction may be preferable.35 We

find a similar bias across different estimation approaches, and for different sets of DGP

35We apply bias correction methods from Tang and Chen (2009) and Yu (2012). Although formally
the methods are not directly applicable, they perform reasonably well, providing monthly and quarterly
bias-corrected MEF median estimates of κ at values 0.192 and 0.273, respectively. The bootstrapped bias
correction along the lines of Tang and Chen (2009, Section 4), which we have adjusted to our setting,
yields a bias-corrected MEF median estimate of κ of 0.204 (cf. Table E2) and will be used for the empirical
application.
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values (cf. Table E1). This finite-sample bias, however, does not seem to translate to other

structural parameters (cf. Figure 1). Moreover, given the relatively wide inter-quartile range,

the κ estimates are still within reasonable distance.

[insert Figure 1]

In Figure 1 we provide the histograms of the 1,000 estimates that we obtain for the

parameters using the MEF approach on both monthly data (Panel A) and quarterly data

(Panel B). The figure confirms the findings from Table 1: The parameters γ, η, ρ, δ, and σ

are centered close to the DGP values. In addition, it becomes clear that the modes of the

histograms for κ in fact are quite close to the DGP values, but the distributions are skewed,

thus causing the difference between median estimates and DGP values reported in Table 1.

We also implement minimum distance (cf. Section A.1.4), using the residual variance

from the consumption (not reported), or both the consumption and interest rate equation

as additional moments (cf. Table E3 in the web appendix), along with β in the regression-

based approaches, allowing better identification of σ for monthly data (columns 2 and 3)

respectively quarterly data (columns 6 and 7). A similar idea for the GMM and MEF

methods is to include further moment restrictions in the martingale estimating equation

(27). The results based on five moment restrictions (instead of three), with the conditional

moments derived in web appendix Section C.3, are reported in Table E3, columns 4 and 5,

for monthly data, respectively 8 and 9 for quarterly data. Including more moments indeed

yields (better) identification of the six parameters. The relatively poor performance of the

regression-based approaches clearly relates to the restriction to first moments. In cases where

the econometrician is able to use second moments, it is advisable to so.

Taken together, the simulation study indicates that the GMM and MEF approaches are

successful in recovering parameter estimates from the data. The regression-based methods

exhibit reasonable performance, but only after accounting for potential estimation problems

due to cross-equation correlation and endogeneity. In empirical work, the regression-based

approaches would also require iteration over the proxy r̂t in (17). In our simulation study,

the values for δ0 and σ0 in (17) are set to their corresponding DGP values of δ and σ.36

5 Data and Results

In this section we estimate the AK-Vasicek model with logarithmic preferences based on

empirical data. We provide results for the estimation approaches developed in Section 3,

using US mixed frequency macro and financial data.

36We examine the sensitivity of OLS and FGLS-SUR-IV parameter estimates to δ0 and σ0 in Table E4.

32



5.1 Data

[insert Figure 2]

To estimate the system (15) we need data on production, consumption, and the short rate.

We obtain these data for the US from the Federal Reserve Economic Dataset (FRED), main-

tained by the Federal Reserve Bank of St. Louis. To measure production, we use both real

Industrial Production (IP), available at the monthly level, and real Gross Domestic Product

(GDP), available at the quarterly level. We use real Personal Consumption Expenditures

(PCE) at the monthly and the quarterly level to proxy consumption. In Figure 2 we show

the plots of the monthly and quarterly growth rates of the variables (Panels A and B). Our

data set spans the period from January 1982 to December 2012.

We combine the data on these aggregate macro series with financial data available at

higher frequency, in particular, the short rate. This rate is a theoretical concept and cor-

responds to an infinitesimal time to maturity. In applied work, the short rate is sometimes

treated as a latent variable that is filtered from observed yield data (e.g., De Jong, 2000).

As a starting point, we follow Chapman, Long, and Pearson (1999), and use the 3-month

interest rate as a proxy for the short rate rft of the risk-free financial asset, here taken as the

US treasury bonds. This interest rate is available from the FRED data set at daily frequency.

We use this series to obtain our monthly and quarterly figure by taking the last observation

in the relevant period. Panel (C) of of Figure 2 shows the daily interest rate series. In the

series, a general downward trend of the interest rate is evident.

Finally, we use the interest rate series to compute approximations to the integrals that

appear in our empirical specification. We approximate the monthly and quarterly series of

integrals using the daily spot rate observations. Given system (15), we approximate three

integrals:
∫ t

t−∆
g(rfv )dv ≈ ∆/P

∑P
i=1 g(r

f
t−∆+i∆/P ), where r

f
t−∆+i∆/P is the 3-month rate on

day i of period t, and P the number of days in the period between t−∆ and t.

5.2 Estimates: MEF with three conditional moment restrictions

When taking our model to the empirical data, we experienced numerical optimization diffi-

culties with some of the parameters, which may be due to possible model misspecification.

From Section 4.2, five parameter combinations are in theory identified without exploiting

second moments (specifically, the consumption growth residual variance). Hence, setting one

parameter should allow estimating the remaining five, but the regression-based methods and

GMM had difficulty doing so. The iterative optimization routines either diverged or pro-

duced economically unreasonable estimates that furthermore depended heavily on starting

values. Consequently, in the reported results, two of the six parameters are set at pre-fixed
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values for these methods, instead of just one. Again, since ρ − 1
2
σ2 and δ + σ2 are identi-

fied, either two of ρ, δ, or σ2 could be restricted. From the simulation study, σ is weakly

identified when not exploiting second moments, so we set this at 0.02, and δ again at 0.05

(cf. also Table E5 in the accompanying web appendix, where we use variance terms for the

regression-based methods and five moments for both GMM and MEF).

In the MEF approach, all six parameters are identified even without using second mo-

ments. Unlike in the simulations, we implemented a slightly simplified version of MEF in

order to avoid similar problems as those encountered with the other methods. Essentially,

the optimal MEF weights ψ⊤
t (Ψt)

−1 from (29) were replaced by weights ψ⊤
t (Ψ̂)−1, i.e., still

with time-varying conditional mean parameter derivatives of martingale increments (31), but

the conditional variance (30) replaced by a constant estimate. Similarly to optimal two-step

GMM, we first estimated with Ψ = I3, then with Ψ̂ computed as the outer product of the

fitted residuals at time t from the first step. We label this approach two-step MEF. All six

parameters were successfully estimated in both steps, and the values for δ and σ broadly in

line with the pre-specified values used in the other methods.37

These identification problems can be interpreted as a first indication that the AK-Vasicek

specification with logarithmic preferences probably will not match the data well. This leads

to some degree of problems for all estimation procedures, in particular GMM, although less

so for the MEF. The likely model misspecification is discussed further below in Section 5.3.

[insert Table 2]

Table 2 provides structural parameter estimates based on both monthly and quarterly

data, using industrial production respectively GDP for output, obtained using the OLS,

FGLS-SUR-IV, GMM, and MEF approaches. The regression-based estimation methods

provide fairly similar estimates of the four parameters for monthly and quarterly data. By

the point estimates, the short rate is mean-reverting, but not very strongly, with speed

parameter κ around 0.08 (0.047 to 0.109 for quarterly data).38 A speed of zero implies a

unit root. The implied first order autocorrelation is e−0.08×1/12 = 0.99 for monthly data.

The long-term target rate γ is about 10%, and the volatility η of the short rate innovation

is between 1.3% and 2.6%. As is well-known, the interest rate has been declining during the

period (see Figure 2, Panel C), so the model will not yield a good fit and is likely misspecified,

37In the web appendix we show that the two-step MEF approach yields similar results compared to MEF
with optimal weights (cf. Table E6). This two-step approach corresponds to the conditional homoskedasticity
assumption from the efficiency bound and optimal instrument literature, but we have shown that our model
is conditionally heteroskedastic, and optimal MEF therefore theoretically most efficient, which could show
up in other applications, in other data, or more elaborate conditionally heteroskedastic models.

38The bootstrapped bias-corrected MEF median estimate of κ is at 0.084 (0.109 for quarterly data).

34



but it is worth noting that the 10% level makes sense. Thus, by the asset pricing equation

(14), it comprises the average risk-free rate from the data, the risk premium σ2 consistent

with logarithmic preferences, and the rate δ of physical capital depreciation. For the given

δ and σ, the time preference parameter ρ is estimated at around 1% in monthly and 2% in

quarterly data. Of course, it is important to note that the two data sets differ not only by

sampling frequency, but also by relying on industrial production respectively GDP.

The GMM estimates of κ and γ are similar to those from the regression-based methods,

whereas the point estimates of ρ are about 0.5 percentage points smaller. The main difference

is that GMM does not pick up any of the innovation variance in the interest rate process.

The MEF results are slightly different in some respects, and it should be kept in mind

that they are obtained without restricting δ and σ. In particular, in quarterly data, the

depreciation rate δ is estimated at 6.2%, i.e., 25% higher than the pre-set value used for the

other methods. Consistently with this, the long-run mean interest rate γ is higher, too, at

13%. In monthly data, these are lower, at 2.5% respectively 5.1%, and the κ and η estimates

at both frequencies are similar to those from other methods (except that GMM had trouble

estimating η). Further, MEF produces precise estimates of ρ at the quarterly frequency and

σ at the monthly, even significant at conventional levels (many of the received estimates are

statistically insignificant, across all parameters and methods). Indeed, both the monthly

and the quarterly MEF estimate of σ confirms the value 0.02 imposed in the other methods.

5.3 Estimates: MEF extensions

[insert Table 3 and Figure 3]

Table 3 shows the results for our MEF extensions: the regime-switching and the stochastic

volatility models (columns 2 and 3), and the latent short rate and mixed-frequency estimation

(columns 5 and 6). For comparison, we replicate in columns 1 and 4 the MEF results from

Table 2. The latent variable extension, case (i), reveals more evidence on the sources of

misspecification: The counter-factual model-implied short rate when it is compared to the

observed interest rate proxy. The results of SMEF in column 5 show that if parts of the data

were model-generated, the interest rate consistent with macro dynamics would show much

higher mean reversion κ, about 13%, and a much lower long-term target rate γ, at about

5.8%, with very small innovation variance, η close to zero. The high t-values reflect the

fact the standard errors are likely downward biased (so the t-values upward biased), because

the additional uncertainty from drawing the short rate is not taken into account, which in

principle could be accounted for by bootstrapping. For illustration, in Panel A of Figure 3

we plot one simulated short rate path r∗t . It is worth noting that in contrast to the observed
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risk-free rate rft , any model-implied short rate r∗t , for the given consumption and income

data, will be upward sloping. Because the proxy r∗t is set to the ratio ρYt/Ct at quarterly

frequency (indicated by dots), the model-implied short rate follows the same pattern. For

this reason, SMEF is not applicable to monthly empirical data since IP is measured as an

index.

The latent variable extension with regime switches of the short rate volatility, case (ii),

indicates that there is not much mean reversion in the interest rate, κ about 0.6%, but rather

switches between high and low volatility states. From the Hamilton filter we obtain a low

volatility regime, ηl, at about 0.5% and a high volatility regime, ηh, at about 2.1%. The

instantaneous transition rates φhl and φlh imply an annual transition probability matrix with

a probability of staying in the low regime next year (based on monthly estimates) of 74.9%

(given a low volatility regime today) and with a probability of staying in the high regime

next year of about 37.9% (given a high volatility regime today). Panel B of Figure 3 shows

that the recent financial crisis starting in 2007 and the 2001 turmoil are well captured by the

high-volatility regime, while the period starting from the mid 1990s was in the low-volatility

regime, sometimes referred to as the big moderation. The macro parameter estimates, annual

rates of time preference ρ about 1.4%, and capital depreciation rate about 2.6% with variance

σ about 2.3%, are roughly in line with our baseline MEF results in column 1.

The latent variable extension with stochastic volatility of the short rate, case (iii), shows

strong mean reversion κ2 in (the logarithm of) the short rate volatility. The speed of mean

reversion, κ2, is about 280%, such that ηt rapidly reverts back to a value of about 0.006

(which corresponds to γ2 about −10.4), similar to our baseline estimate (column 1). Based

on a regression for the RV proxy series, the volatility (of the logarithm) of the latent short

rate volatility, ξ, is identified at about 3.8. Regarding the macro parameter estimates,

the estimates for ρ and σ are similar to those in the regime-switching model (column 2),

whereas the depreciation rate is somewhat higher, about 7.5%, but still in line with the usual

estimates.

The mixed-frequency data analysis, case (iv), indicates that the MF-MEF long-term value

for the interest rate γ is even smaller, about 3%, but quite persistent. The point estimate for

the speed of mean-reversion parameter κ is 2.3%, which suggests a near unit root behavior.

The innovation variance η is close to zero. Our MF-MEF approach yields a more precise

estimate for ρ of about 1.3% compared to the MEF estimate of 2.1% and 0.3% for quarterly

respectively monthly data. The point estimate for the depreciation rate δ using quarterly

GDP and monthly consumption is smaller than the MEF values, about 1% only.
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6 Conclusion

The literature has been relatively quiet on the links between macroeconomics and finance,

though anecdotal evidence – such as the recent financial crisis – clearly shows that financial

markets and the real economy are closely linked. In this paper we provide an econometric

framework in which macroeconomics, finance and econometrics are coherently linked. The

framework is developed in a continuous-time setting that conveniently allows for thinking

about variables observed at different frequencies.

This paper describes various methods, including the GMM and the more efficient MEF

approach, in order to estimate the structural parameters of continuous-time DSGE mod-

els using mixed-frequency macro and financial market data. We illustrate our approach by

solving and estimating a stochastic AK model with mean-reverting interest rates. Our re-

sults for both simulated and empirical data are very promising and show that financial and

macro data can indeed be used jointly to facilitate the estimation of structural parameters in

continuous-time versions of the general equilibrium models. Overall, on the methodological

side, our work suggests that MEF is preferred over GMM and regression-based approaches,

particularly when the econometrician is restricted to first moments. It allows identifying all

structural parameters already from first moments, and estimates are more precise, numeri-

cally stable, and economically meaningful. We provide extensions of MEF akin to filtering

in order to estimate models with latent variables based on simulations, SMEF, and model-

consistent prediction for mixed-frequency data, MF-MEF. Development of further general

equilibrium models in the Cox, Ingersoll, and Ross (1985a) framework to more elaborate

specifications and formal testing of these is part of our research agenda.

7 Appendix

7.1 The Bellman equation and the Euler equation

As a necessary condition for optimality in our baseline model (cf. Section 2.1), Bellman’s

principle gives at time s

ρV (Ks, As) = max
Cs

{
u(Cs, As) +

1

dt
EsdV (Ks, As)

}
.

Itô’s formula yields

dV = VKdKs + VAdAs +
1
2

(
VAAη(As)

2 + VKKσ
2K2

s

)
dt

= ((rs − δ)Ks + ws − Cs)VKdt+ VKσKsdZs + VAµ(At)dt+ VAη(As)dBs

+1
2

(
VAAη(As)

2 + VKKσ
2K2

s

)
dt.
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Using the properties of stochastic integrals, we may write

ρV (Ks, As) = max
Cs

{u(Cs, As) + ((rs − δ)Ks + ws − Cs)VK

+1
2

(
VAAη(As)

2 + VKKσ
2K2

s

)
+ VAµ(As)

}

for any s ∈ [0,∞). Because it is a necessary condition for optimality, we obtain the first-order

condition (8), which makes optimal consumption a function of the state variables.

For the evolution of the costate we use the maximized Bellman equation

ρV (Kt, At) = u(C(Kt, At), At) + ((rt − δ)Kt + wt − C(Kt, At))VK

+1
2

(
VAAη(At)

2 + VKKσ
2K2

t

)
+ VAµ(At), (49)

where rt = r(Kt, At) = YK and wt = w(Kt, At) = YL, to compute the costate,

ρVK = ((rt − δ)Kt + wt − Ct)VKK + (rt − δ)VK

+1
2

(
VAAKη(At)

2 + VKKKσ
2K2

t

)
+ VKKσ

2Kt + VAKµ(At).

Collecting terms we obtain

(ρ− (rt − δ))VK = ((rt − δ)Kt + wt − Ct)VKK

+1
2

(
VAAKη(At)

2 + VKKKσ
2K2

t

)
+ VKKσ

2Kt + VAKµ(At). (50)

Using Itô’s formula, the costate obeys

dVK = VAKµ(At)dt+ VAKη(At)dBt

+1
2

(
VKAAη(At)

2 + VKKKσ
2K2

t

)
dt

+((rt − δ)Kt + wt − Ct)VKKdt+ VKKσKtdZt,

where inserting (50) into the last expression yields

dVK = (ρ− (rt − δ))VKdt− VKKσ
2Ktdt+ VAKη(At)dBt + VKKσKtdZt,

which describes the evolution of the costate variable. As a final step, we insert the first-order

condition (8) to obtain the Euler equation (9).

As shown in Posch (2009), the model has a closed-form solution, and the value function

is V (Kt, At) = lnKt/ρ + f(At), where f(At) solves a simple ODE, which in turn depends

on the functional forms of η(At) and µ(At). The idea of this proof is as follows. We use a

guess for the value function and obtain conditions under which both the maximized Bellman

equation (49) and the first-order condition (8) are fulfilled. Our guess is

V (Kt, At) = C1 lnKt + f(At). (51)
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From (8), optimal consumption is a constant fraction of wealth, Ct = C
−1
1 Kt. Now use the

maximized Bellman equation (49) and insert the candidate solution,

ρC1 lnKt + g(At) = lnKt − lnC1 + ((At − δ)Kt − C
−1
1 Kt)C1/Kt,

in which g(At) ≡ ρf(At) − 1
2
(fAAη(At)

2 − σ2) − fAµ(At). Thus, we obtain the condition

C1 = 1/ρ and collect the remaining terms in g(At) = ln ρ+At − δ − ρ. In the Vasicek case,

η(At) = η and µ(At) = κ(γ−At), we get f(At) = C2At +C3, in which C2 = C1/(ρ+ κ) and

C3 = (κγC2 − lnC1 − 1− (δ + 1
2
σ2)C1)/ρ.

7.2 Proof of Theorem 3.2

(a) and (b) are among the results of Hansen (1982). The remaining results follow along the

lines of Godambe and Heyde (1987), Heyde (1997), and Christensen and Sørensen (2008).

In particular, any estimating function given on the form MT =
∑T

t=1 wtmt as in (26), with

wt in the information set at t− 1, is a zero-mean martingale. This follows because

ET−1 (MT ) =
T−1∑

t=1

wtmt + wTET−1 (mT )

= MT−1, (52)

using the conditional moment restrictions ET−1 (mT ) = 0. Specifically, by iterated expecta-

tions,

E (MT ) = E (ET−1 (MT ))

= E (MT−1) , (53)

so that E (MT ) = E (M1) = E (w1m1) = w1E (m1) = 0. Starting now with Theorem 3.2 (d),

it follows from Theorem 2.1 in Heyde (1997) that in the class of estimating functions given

on this form, M∗
T given by the choice wt = w∗

t is optimal in the sense of smallest possible

asymptotic variance if and only if the matrix
(
E

(
∂MT

∂φ⊤

))−1

E
(
MT (M∗

T )
⊤
)

(54)

is the same for all estimating functions MT in the class. We have

E

(
∂MT

∂φ⊤

)
=

T∑

t=1

E

(
wt
∂mt

∂φ⊤

)

=

T∑

t=1

E

(
wtEt−1

(
∂mt

∂φ⊤

))

=
T∑

t=1

E (wtψt) , (55)
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using iterated expectations and the definition (31). Similarly,

E
(
MT (M∗

T )
⊤
)

=

T∑

s=1

T∑

t=1

E
(
wsmsm

⊤
t (w∗

t )
⊤
)

=
T∑

t=1

E
(
wtEt−1

(
mtm

⊤
t

)
(w∗

t )
⊤
)
+

T−1∑

s=1

T∑

t=s+1

E
(
wsmsEt−1

(
m⊤

t

)
(w∗

t )
⊤
)

+

T∑

s=2

s−1∑

t=1

E
(
wsEs−1 (ms)m

⊤
t (w∗

t )
⊤
)

=
T∑

t=1

E
(
wtΨt (w

∗
t )

⊤
)
, (56)

using iterated expectations, the conditional moment conditions, and the definition (30). It

follows that when w∗
t = ψ⊤

t (Ψt)
−1 as in Definition 3.1 (d), expressions (55) and (56) coincide,

so that the matrix (54) that is required common across MT equals the identity matrix, and

optimality of the estimating function M∗
T follows.

Theorem 3.2 (c) follows in the usual way from the mean value theorem,

0 =M∗
T (φ̂) =M∗

T (φ) + ST (φ̂− φ). (57)

Here, the (i, j)’th entry of the dimφ× dimφ matrix ST is

(ST )ij =
∂M∗

T (φ
(j))i

∂φj

, (58)

where φ(j) is a value of the parameter vector on the straight line connecting φ̂ and φ. By

(55) and ergodicity,

1

T

∂M∗
T (φ)

∂φ⊤

a.s.−→ E(w∗
tψt)

= E(ψ⊤
t (Ψt)

−1ψt), (59)

where the convergence is with probability one as T → ∞. From (58) and (59),

1

T
ST

a.s.−→ E(ψ⊤
t (Ψt)

−1ψt), (60)

since the regularity conditions ensure that the convergence is uniform in a
√
T -shrinking

neighborhood of φ. We have

V ar

(
M∗

T (φ)√
T

)
=

1

T
E
(
M∗

T (M∗
T )

⊤
)

= E
(
w∗

tΨt (w
∗
t )

⊤
)

= E(ψ⊤
t (Ψt)

−1ψt), (61)
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where the first equality is based on the zero mean condition, the second on (56), and the

third on the form of the optimal instruments, cf. Definition 3.1 (d). Since M∗
T (φ) is a zero-

mean martingale, and because (61) is regular, so that V ar (M∗
T (φ))

a.s.−→ ∞, we have by (60)

and the strong law for martingales, see Hall and Heyde (1980), that

S−1
T M∗

T (φ)
a.s.−→ 0, (62)

and strong consistency of φ̂ follows from (57). By the martingale central limit theorem, see

Hall and Heyde (1980),

1√
T
M∗

T (φ)
d−→ N (0, E(ψ⊤

t (Ψt)
−1ψt)), (63)

where the form of the asymptotic variance follows from (61). Combining (57), (60), and

(63), we have

√
T
(
φ̂− φ

)
= −

(
ST

T

)−1
M∗

T (φ)√
T

d−→ N (0,
(
E(ψ⊤

t (Ψt)
−1ψt)

)−1
E(ψ⊤

t (Ψt)
−1ψt)

(
E(ψ⊤

t (Ψt)
−1ψt)

)−1
)

= N (0,
(
E(ψ⊤

t (Ψt)
−1ψt)

)−1
). (64)

Consistent estimation of the asymptotic variance by (37) follows from stationarity and er-

godicity.

Theorem 3.2 (g) follows because an estimating function of the form
∑T

t=1 gtht =
∑T

t=1 gt(zt⊗
mt) may be written as

∑T
t=1 gt(zt ⊗ Idimm)mt =

∑T
t=1wtmt, where wt = gt(zt⊗ Idimm). This

implies that using the expanded set of moment conditions based on ht is a special case of

using the original moment conditions based on mt. In both cases, the instrument matrices

(or weights, i.e., gt respectively wt) need only have dimφ rows, as argued in the main text

before Theorem 3.2: Using more rows is GMM, but an estimator asymptotically equivalent

to optimal GMM is obtained using constant gt = G of dimension dimφ×dim h. Since using

ht is a special case of using mt, the optimal MEF estimator based on the latter is obviously

at least as efficient as that based on the former. That the two actually coincide requires

showing that given moment conditions based on ht, it is possible to recover those based on

mt. This follows because any estimating function based on mt may be recast in terms of ht

by writing

T∑

t=1

wtmt =

T∑

t=1

wt(z
−
t ⊗ Idimm)(zt ⊗ Idimm)mt

=
T∑

t=1

gtht, (65)
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with gt = wt(z
−
t ⊗ Idimm), where z

−
t = z⊤t /z

⊤
t zt is a left inverse of zt, viz., z

−
t zt = 1.

Theorem 3.2 (f) also follows from these calculations, since for GMM to coincide with

optimal MEF it is necessary that the ht in GMM equal ψ⊤
t (Ψt)

−1mt, which can only happen

in the two cases stated.

For Theorem 3.2 (e), that optimal MEF is at least as efficient as GMM follows from

combining (d) and (g), including the proof of (g). There is no gain to expanding from

moments mt to ht, by the proof of (g). Given moment conditions based on mt, optimal MEF

is at least as efficient as any other MEF estimator, by (d), and therefore at least as efficient

as GMM based on mt, as this is a special case of MEF (namely, with constant gt ≡ G).

Finally, to prove the strict inequality, that optimal MEF is strictly more efficient than

GMM unless the two estimators coincide, consider again the optimal MEF estimator given as

the solution with respect to φ of the system
∑T

t=1 w
∗
tmt = 0, with w∗

t = ψ⊤
t (Ψt)

−1. Now recall

that for zero mean variables x and y with finite variances, the mean square error predictor

of y given x is Cov(y, x)V ar(x)−1x, with prediction error variance-covariance matrix given

by V ar(y)−Cov(y, x)V ar(x)−1Cov(x, y). We apply this to the case y = w∗
tmt and x = mt.

In particular,

V ar(w∗
tmt) = E

(
w∗

tmtm
⊤
t ( w∗

t )
⊤
)

= E
(
w∗

tEt−1

(
mtm

⊤
t

)
(w∗

t )
⊤
)

= E
(
w∗

tΨt (w
∗
t )

⊤
)

= E(ψ⊤
t (Ψt)

−1ψt), (66)

by iterated expectations. Similarly,

Cov(w∗
tmt, mt) = E

(
w∗

tmtm
⊤
t

)

= E
(
w∗

tEt−1

(
mtm

⊤
t

))

= E
(
ψ⊤
t (Ψt)

−1Ψt

)

= E
(
ψ⊤
t

)

= E

((
Et−1

(
∂mt

∂φ⊤

))⊤
)

= E

(
∂m⊤

t

∂φ

)
, (67)

by repeated use of iterated expctations. Thus, the mean square error predictor of w∗
tmt given

mt is pt = E(∂m⊤
t /∂φ)V ar(mt)

−1mt, with prediction error variance-covariance matrix given
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by

V ar(w∗
tmt − pt) = E(ψ⊤

t (Ψt)
−1ψt)− E

(
∂m⊤

t

∂φ

)
V ar(mt)

−1E

(
∂mt

∂φ⊤

)

= (VMEF )
−1 − (VGMM)−1 , (68)

using Theorem 3.2 (a) and (c), the former with ht = mt (as already argued, we must

compare to GMM based on ht = mt). Here, since the left-hand side is a variance-covariance

matrix, it is positive semi-definite, and since the right-hand side is the difference between

the MEF and GMM inverse variances (or precisions), we have again the weak inequality

VMEF ≤ VGMM . Furthermore, VMEF = VGMM requires that the right-hand side of (68)

vanishes identically. Because the left-hand side is a variance-covariance matrix, it vanishes

only if the distribution of the random vector, in this case w∗
tmt − pt, is degenerate, i.e.,

w∗
tmt = pt = E(∂m⊤

t /∂φ)V ar(mt)
−1mt. This requires that the time-varying MEF matrices

w∗
t simplify to the constant w∗

t = E(∂m⊤
t /∂φ)V ar(mt)

−1, i.e., the matrix G shown in the

main text before Theorem 3.2 to correspond to optimal GMM (with ht = mt). Thus, optimal

MEF and GMM coincide in this case. In all other cases, the left-hand side in (68) above is

strictly positive definite, hence so is the right-hand side, i.e., VMEF < VGMM .
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Table 1: Simulation Study – AK-Vasicek with Three Conditional Moment Restrictions
The table reports output of a simulation study of the accuracy of the structural model parameters estimated using the OLS, FGLS-SUR-IV, GMM
and MEF approaches for the AK-Vasicek model. For 1,000 replications, we generate 25 years of data from the underlying data generating process
(DGP) and apply our estimation strategy. We show the median estimate, and provide the interquartile range below it.

Parameter Estimates from Simulation Study – Monthly & Quarterly Data

Monthly Data Quarterly Data
DGP OLS FGLS-SUR-IV GMM MEF OLS FGLS-SUR-IV GMM MEF

κ 0.2 0.349
0.286

0.299
0.134

0.345
0.345

0.354
0.284

0.354
0.290

0.225
0.119

0.287
0.319

0.353
0.305

γ 0.1 0.201
0.036

0.101
0.013

0.100
0.014

0.099
0.013

0.198
0.036

0.100
0.014

0.101
0.015

0.099
0.013

η 0.01 0.083
0.036

0.008
0.004

0.010
0.001

0.010
0.001

0.083
0.035

0.007
0.003

0.010
0.002

0.010
0.001

ρ 0.03 0.080
0.015

0.030
0.006

0.030
0.007

0.030
0.006

0.079
0.015

0.030
0.006

0.031
0.007

0.030
0.006

δ 0.05 0.05 0.05 0.05 0.050
0.002

0.05 0.05 0.05 0.050
0.003

σ 0.02 0.317
0.040

0.000
<0.001

0.027
0.047

0.023
0.005

0.312
0.044

0.000
<0.001

0.040
0.064

0.025
0.010
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Table 2: Estimates – AK-Vasicek with Three Conditional Moment Restrictions
The table reports estimates for the structural model parameters estimated using OLS, FGLS-SUR-IV, GMM, and MEF approaches for the AK-Vasicek
model with three conditional moment restrictions. We run the estimation for monthly data (where production is measured by IP) and quarterly data
(production measured by GDP). The sample runs from January, 1982, through December, 2012. Asymptotic t-statistics are given below the estimates.

Parameter Estimates from Empirical Data

Monthly Data Quarterly Data
OLS FGLS-SUR-IV GMM MEF OLS FGLS-SUR-IV GMM MEF

κ 0.094
0.582

0.073
2.46

0.054
0.314

0.060
0.930

0.109
1.94

0.047
0.221

0.062
0.971

0.068
0.515

γ 0.094
2.08

0.089
<0.001

0.064
0.549

0.051
0.479

0.129
<0.001

0.119
7.97

0.095
2.25

0.131
0.483

η 0.016
0.097

0.013
<0.001

0.000
<0.001

0.006
0.639

0.026
0.081

0.013
1.97

0.000
<0.001

0.014
0.221

ρ 0.014
0.976

0.014
0.430

0.005
0.129

0.003
0.802

0.021
0.974

0.020
0.871

0.015
0.753

0.021
5.95

δ 0.05 0.05 0.05 0.025
0.162

0.05 0.05 0.05 0.062
0.144

σ 0.02 0.02 0.02 0.020
3.3

0.02 0.02 0.02 0.020
1.15
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Table 3: Estimates – MEF Extensions
The table reports estimates for the structural model parameters for the MEF extensions: The latent short
rate and mixed-frequency approaches for the AK-Vasicek model, SMEF (Latent Short Rate) and MF-MEF,
respectively, and for the regime-switching (RS) and stochastic volatility (SV) models. We run the estimation
for monthly data (where production is measured by IP), quarterly data (production measured by GDP)
and the mixed-frequency data (where production is quarterly GDP data, and monthly consumption data).
The sample runs from January, 1982, through December, 2012. Asymptotic t-statistics are given below the
estimates.

Parameter Estimates from Empirical Data

Monthly Data Quarterly Data Mixed-Frequency
MEF RS SV MEF SMEF MF-MEF

κ/κ1 0.060
0.93

0.006
0.152

0.073
0.069

0.068
0.515

0.126
3.2

0.023
0.137

γ/γ1 0.051
0.479

0.125
0.3

0.087
0.045

0.131
0.483

0.058
55.8

0.030
0.937

η 0.006
0.639

0.014
0.221

0.000
0.3

0.001
0.005

ηl 0.005
11.2a

ηh 0.021
10.0a

φlh 0.591
2.36a

φhl 1.464
2.22a

κ2 2.818
34.8

γ2 −10.377
−251.4

ξ 3.834
0.707b

ρ 0.003
0.802

0.014
3.524

0.012
0.012

0.021
5.95

0.009
4.39

0.013
23.2

δ 0.025
0.162

0.026
0.475

0.075
0.165

0.062
0.144

0.024
12.0

0.008
0.042

σ 0.020
3.3

0.023
9.116

0.021
0.604

0.020
1.15

0.022
510

0.025
1.06

aBased on Hamilton filter for interest rate only
bBased on regression for proxy series
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Figure 1: Simulation Study – Monthly and Quarterly Data
The figure reports output of a simulation study of the accuracy of the structural model parameters estimated
using the MEF approach for the AK-Vasicek model. For 1,000 replications, we generate 25 years of data from
the underlying data generating process (DGP) and apply our estimation strategy. We plot the distribution
of the obtained estimates, in Panel A for monthly data and in Panel B for quarterly data.
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(B) Quarterly Data
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Figure 2: Overview of Quarterly, Monthly and Daily Variables
The figure shows time series plots of the variables in our data set at the quarterly (Panel A), monthly (Panel
B), and daily (Panel C) frequency. In Panel A, the top plot shows the growth rate of real Gross Domestic
Product (GDP), and the bottom plot that of real Personal Consumption Expenditure (PCE), both at the
quarterly frequency. In Panel B, the top plot shows the growth rate of Industrial Production (IP), and the
bottom plot that of real PCE, both at the monthly frequency. Panel C shows the nominal 3m interest rate
series at the daily frequency. All series are obtained from the Federal Reserve Bank of St. Louis Economic
Dataset (FRED). The sample runs from January, 1982, through December, 2012.
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Figure 3: Simulated Latent Short Rate and Estimated Volatility Regimes
In this figure we show the simulated latent short rate and the output from the regime-switching model. Panel
(A) provides the simulated latent short rate that is obtained by applying our latent short rate extended
MEF approach to the AK-Vasicek model. We report the short rate estimate based on quarterly data. The
line represents one path of the simulated short rate series, and the dots the proxy r∗t = ρYt/Ct. Panel (B)
reports the output of the Regime Switching (RS) model estimated using the regime-switching extended MEF
approach for monthly data. The top plot provides the estimated probability of being in the high-volatility
state (solid line; dashed line is 50% for reference). The bottom plot provides the estimated volatility based
on the Regime Switching model (solid line), along with the Realized Volatility (RV) estimate based on daily
short rate data for comparison (dashed line). In both panels, the sample runs from January, 1982, through
December, 2012.
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