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1 Introduction

It is a commonly held perception that the workhorse of financial economics – the consumption-

based capital asset pricing model (C-CAPM) – has fallen on hard times.1 Most prominent is

the failure to account for the U.S. equity premium with any plausible values of risk aversion,

which has been referred to as the ‘equity premium puzzle’ (Mehra and Prescott, 1985).

The limitations of the standard C-CAPM gave rise to a vast literature of model extensions

to achieve better empirical performance.2 An open question remains, however, why leading

asset pricing models fail on one particular dimension: these models have severe trouble to

explain why the standard C-CAPM generates verz large empirical pricing errors (or Euler

equation errors, cf. Lettau and Ludvigson, 2009, p.255),

“Unlike the equity premium puzzle, these large Euler equation errors cannot be

resolved with high values of risk aversion. To explain why the standard model

fails, we need to develop [...] models that can rationalize its large pricing errors.”

This paper makes three contributions. First, we show that this ‘Euler equation puzzle’ of

Lettau and Ludvigson (2009) can be explained by the Barro-Rietz rare disaster hypothesis

(Rietz, 1988; Barro, 2006, 2009), i.e., infrequent but sharp contractions (as during historical

events such as the Great Depression or World War II). Hence, consumption-based models

with low-probability disasters qualify as a class of models which is able to rationalize the

large pricing errors of the canonical model. In fact, including low-probability disasters the

standard C-CAPM not only explains the equity premium (as shown in Barro, 2006), but

also can generate large Euler equation errors as found empirically in the data.

Second, we derive analytical expressions for asset returns, the stochastic discount factor

(SDF), and Euler equation errors, both in an endowment economy and in a production

economy with low-probability disasters. It is important to emphasize, however, that only

the departure from (conditional) log-normality of asset returns, e.g., using a stochastically

changing investment opportunity set as in the production economy, is able to generate sizable

‘empirical’ pricing errors. Our analytical results shed light on the endogenous time-varying

behavior of asset returns in the (neoclassical) production economy, and the effects of rare

disasters on Euler equation errors in general equilibrium.

Third, we present extensive Monte Carlo evidence to investigate the impact of low-

probability disasters on the plausibility of standard C-CAPM parameter estimates. We find

1The consumption-based asset pricing model has its roots in the seminal articles by Rubinstein (1976),
Lucas (1978), and Breeden (1979). Ludvigson (2011) provides an excellent survey of the literature.

2An non-exhaustive list of prominent modifications of the consumption-based model includes habit for-
mation preferences (Campbell and Cochrane, 1999), long-run risk (Bansal and Yaron, 2004), heterogeneous
agents and limited stock market participation (e.g. Guvenen, 2009).
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that implausibly high empirical estimates for the risk aversion and for the time preference

parameters – as typically found in the empirical literature – are not puzzling in a world with

rare disaster risk and is the consequence of using the wrong pricing kernel. This finding is

complementary to the result in Lettau and Ludvigson (2009, p.279).

Our analysis builds on the continuous-time formulation of dynamic stochastic general

equilibrium (DGSE) models, which gives analytical tractability. We focus on Euler equation

errors of Lettau and Ludvigson (2009).3 The authors show that leading extensions of the

consumption-based model – such as the long-run risk model (Bansal and Yaron, 2004),

habit formation model (Campbell and Cochrane, 1999), and the limiting participation model

(Guvenen, 2009) – cannot explain why the standard C-CAPM model generates large pricing

errors. We now show that the extension with low-probability disasters in fact can rationalize

large pricing errors of the C-CAPM.

The motivation for considering rare events as a solution to asset pricing puzzles is intu-

itive and goes back at least to Rietz (1988). The hypothesis has received renewed attention

starting with Barro (2006), who backs up the calibration of his model by historical estimates

of consumption disasters for a broad set of countries over a very long period. It has been

shown recently that several asset pricing phenomena can be understood by rare disasters

(Wachter, 2009; Gabaix, 2008, 2012). To the best of our knowledge, the effects of rare disas-

ters on pricing errors have not been studied yet. In the Barro-Rietz framework, asset prices

reflect risk premia for infrequent and severe disasters in which consumption drops sharply.

If such rare disasters are expected by investors ex-ante and thus reflected in their consump-

tion and investment decisions, but happen not to occur in sample, an equity premium of

the magnitude observed for the U.S. data can materialize.4 Barro shows that a calibrated

version of the standard C-CAPM with rare events is able to explain the level of the U.S.

equity premium at plausible parameters of risk aversion. We show that the rare disaster

hypothesis helps along two other dimension, (1) explaining the empirical pricing errors, and

(2) explaining implausible estimates of model parameters in empirical work.

The remainder of the paper is organized as follows. Section 2 provides a formal definition

of the Euler equation errors, presents some empirical benchmark estimates and gives an

intuitive preview of our main analytical and simulation-based results. Section 3 derives asset

prices in an endowment economy and in a production economy with rare disasters. Section

4 derives analytical expressions for Euler equation errors in general equilibrium. Section 5

3As documented by a multitude of empirical studies, the standard C-CAPM leaves a substantial fraction
of the average return unexplained when the model is asked to account for differences in average returns across
different assets (see, e.g., empirical results in Hansen and Singleton, 1982; Lettau and Ludvigson, 2001).

4This is related to the statement in Cochrane (2005, p.30) that the U.S. economy and other countries
with high historical equity premia may simply constitute very lucky cases of history.
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contains Monte-Carlo evidence which shows that rare events model work well in explaining

several dimensions of the empirical weaknesses of the standard consumption-based model

including large Euler equation errors. Section 6 concludes.

2 Euler equation errors

In this section we provide a brief discussion on the definition of Euler equation errors, the

empirical facts typically encountered in the data as well as a brief preview of how rare

disasters may help rationalizing the empirical puzzles.

2.1 Euler equation errors and their empirical counterparts

Consider the standard first-order condition implied by the canonical version of the C-CAPM

with time-separable utility functions,

u′(Ct) = e−ρEt [u
′(Ct+1)Rt+1] , u′ > 0, u′′ < 0. (1)

The optimality condition (1) is referred to as the Euler equation. It implicitly determines the

optimal path of per capita consumption Ct, given gross returns Rt+1 on the investor’s savings

(or assets), and ρ > 0 is a subjective time-discount rate. We define the stochastic discount

factor (SDF) as the process ms/mt ≡ e−ρ(s−t)u′(Cs)/u
′(Ct) such that, for any security with

price Pi,t and instantaneous payoff Xi,s at some future date s ≥ t, we have

mtPi,t = Et [msXi,s] ⇒ 1 = Et [(ms/mt)Ri,s] , (2)

where Ri,s ≡ Xi,s/Pi,t denotes the security’s return. In discrete-time models, the SDF at

date s = t+ 1 is usually defined as Mt+1 ≡ mt+1/mt. Hence, the Euler condition (2) can be

used to discount expected payoffs on any asset to find their equilibrium prices: The agent is

indifferent between investing into the various assets if (2) is satisfied. In this paper we study

how the properties of the SDF explain pricing errors and how the SDF is determined by the

general equilibrium of the economy.

Any deviations from (2) represent Euler equation errors,

eiR ≡ Et [(ms/mt)Ri,s]− 1, eiX ≡ Et [(ms/mt)(Ri,s −Rb,s)] , (3)

based on the gross return on any tradable asset, Ri,s or as a function of excess returns over a

reference asset, Ri,s−Rb,s, e.g., the return on a bond (Lettau and Ludvigson, 2009). In what

follows, we refer to either eiR or eiX as the Euler equation error, whereas to their empirical
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counterparts êiR and êiX as the estimated Euler equation error for the ith asset. The latter

is defined for specific utility functions, e.g., for power utility with risk aversion γ,

êiR ≡ Et

[
e−(s−t)ρ̂(Cs/Ct)

−γ̂Ri,s

]
− 1, êiX ≡ Et

[
e−(s−t)ρ̂(Cs/Ct)

−γ̂(Ri,s −Rb,s)
]
, (4)

where ρ̂ and γ̂ denote the estimated parameters of time-preference and risk aversion. These

estimates are usually obtained by the generalized method of moments (GMM) of Hansen

(1982) by minimizing a quadratic form of the pricing errors. The fit of the model is often

expressed by the root mean squared error (RMSE), which is a summary measure of the

magnitude of the fitted Euler equation errors.

2.2 Euler equation errors and empirical puzzles

As mentioned above, it is a well-established fact that the standard C-CAPM with power

utility is incapable of explaining cross-sectional variation in average asset returns. In other

words, the model produces substantial pricing errors (Euler equation errors) when fitted to

the data. In order to obtain some benchmark estimates to be used in our theoretical section,

we estimate the parameters of a standard C-CAPM pricing kernel β(Ct+1/Ct)
−γ with U.S.

postwar data (1947:Q2-2009:Q3). A large literature has focused on the performance of the

model to simultaneously explain the return on a broad stock market portfolio and the return

on a riskless asset such as the U.S. Treasury Bill (henceforth T-Bill). Moreover, it has also

been shown that the C-CAPM fails to explain the return differences among stock portfolios

sorted by size and book-to-market ratios (see, e.g., Lettau and Ludvigson, 2001).

To begin with, we follow Lettau and Ludvigson (2009) and estimate the C-CAPM model

for two sets of test assets: First, a market portfolio, Rm,t, and the T-Bill, Rb,t, and second

we add 6 size and book-to-market portfolios (RFF,t from Kenneth French’s website).5 We

obtain the known result that the C-CAPM is seriously flawed: The parameter estimates are

implausible, β̂ = 1.5, γ̂ = 123.0 for the case of two assets Rm,t and Rb,t (or β̂ = 1.4, γ̂ = 101.6

when including RFF,t).
6 These estimates are grossly inconsistent with economic theory. A

time discount factor above one implies that households value future consumption more than

current consumption, whereas the estimated parameter of relative risk aversion is far higher

than the microeconomic evidence on individuals’ behavior in risky gambles.

5The estimation is based on gross-returns deflated by the PCE deflator. The series of consumption is
obtained from the NIPA tables (real consumption of nondurables and services, expressed in per capita terms).
The estimation is conducted by standard GMM with the identity matrix as a weighting matrix.

6Estimation on German post-war data for the two asset case (1975:Q1-2008:Q4) yields β̂ = 0.77, γ̂ = 82.3,
with RMSE of 2.53%. Estimation on a longer sample from 1900 to 2008 (annual data from Global Financial

Data, consumption data from Barro and Ursua, 2008) yields β̂ = 0.64 and γ̂ = 6.53, with RMSE of 1.5%.
Note that the latter period includes World War I, the Great depression and the World War II episodes.
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In addition, the Euler equation errors are economically large. Here, the RMSE amounts

to 2.49% (3.05%) p.a. for the two-asset case (the larger cross-section), leaving a substantial

fraction of the cross-sectional variation of average returns unexplained. It is puzzling to

the econometrician why individuals seem to accept surprisingly large and persistent pricing

errors. Economically, this result implies that consumers seem to accept a 2.5 dollar pricing

error for each 100 dollar spent. As Lettau and Ludvigson (2009) further demonstrate, it is

not possible to reduce the Euler equation error to smaller magnitudes (or even to zero) by

choosing other parameter constellations. Additionally, they convincingly show that all the

newly proposed theories of consumption-based asset pricing, as referred to before, are not

capable of rationalizing the large pricing errors of the canonical model.

However, as we argue below, the consumption-based models coupled with stochastically

occurring rare disasters of the Barro-Rietz type, which just happen not to occur within the

sample, are able to rationalize the pricing errors of the C-CAPM and produce substantial

biases in parameter estimates – akin to our observation in the empirical data.

2.3 Rare events and Euler equation errors - A preview

While the optimality conditions (1) and (2) are very general pricing formulas which must be

fulfilled in most consumption-based models, the continuous-time formulation helps making

the effects on pricing errors more explicit as the distributional assumptions directly appear.

Allowing for rare disasters, suppose that a continuous-time formulation of the C-CAPM

implies the following Euler equation (as shown below)

du′(Ct) = −(rft − ρ)u′(Ct)dt− πtu
′(Ct)dBt + (u′(Ct)− u′(Ct−))(dNt − λtdt), (5)

where rft is the (shadow) risk-free rate, πt is a measure of risk, Bt is a standard Brownian

motion, and Nt is a standard Poisson process capturing rare events occuring at the arrival

rate λt, and Ct− is the left-limit, Ct− ≡ lims→t Cs, for s < t (cf. Merton, 1971). We obtain

the SDF from the Euler equation: Use Itô’s formula to rewrite (5) for s ≥ t as

d ln u′(Ct) = −(rft − ρ+ 1
2
π2
t )dt− πtdBt + (ln u′(Ct)− ln u′(Ct−))(dNt − λtdt).

Now integrate and equate discounted marginal utility in s and t, e−ρ(s−t)u′(Cs)/u
′(Ct), or

ms/mt ≡ exp

(
−

∫ s

t

(rfv +
1
2
π2
v)dv −

∫ s

t

πvdBv +

∫ s

t

ln

(
u′(Cv)

u′(Cv−)

)
(dNv − λvdv)

)
(6)

defines the stochastic discount factor (also known as pricing kernel or state-price density).

We are now prepared to make our two main points resolving the empirical puzzles. First,

the presence of rare events can generate quite persistent pricing errors in finite samples. For
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illustration, consider a risk-free asset with gross return Rf,s ≡ exp(
∫ s

t
rfvdv). From (3) and

(6), we obtain the Euler equation error, conditioned on no disasters as

efR|Ns−Nt=0 = Et [(ms/mt)Rf,s|Ns −Nt = 0]− 1

= exp

(
−

∫ s

t

ln

(
u′(Cv)

u′(Cv−)

)
λvdv

)
− 1 < 0 for u′(Cv)/u

′(Cv−) > 1,

which is strictly negative for consumption disasters. Our result shows that the individuals

accept persistent pricing errors for the events that happen not to occur in normal times.7

As shown in Barro (2006), rare disasters have been sufficiently frequent and large enough

to explain the equity premium puzzle. As we show below analytically and by simulations,

low-probability events are quantitatively important for Euler equation errors as well.

Our second main point is based on estimated Euler equation errors and the associated

parameter estimates. Provided we have economically substantial Euler equation errors, the

standard GMM procedure of obtaining parameter estimates will be severely biased.8 As

we show below in simulations, implausible high estimates of the parameter of relative risk

aversion – of similar magnitudes as in empirical studies – will appear in samples where the

sample frequency of rare disasters differs from their population value.

3 Asset pricing models with rare events

This section computes general equilibrium consumption and asset returns in endowment and

production economies. These measures are used below to compute Euler equation errors.

3.1 Lucas’ endowment economy with rare disasters

Consider a fruit-tree economy and a riskless asset in normal times but with default risk

(government bond) similar to Barro (2006) using the formulation as in Posch (2011). Similar

papers consider time-varying disaster probabilities (Gabaix, 2008; Wachter, 2009), which will

not substantially affect our result and thus is not the focus of our analysis.

3.1.1 Description of the economy

Technology. Consider an endowment economy (Lucas, 1978). Suppose production is entirely

exogenous: No resources are utilized, and there is no possibility of affecting the output of

7This result refers to Hansen and Jagannathan (1991, p.250), who note that the sample volatility may be
substantially different than the population volatility if consumers anticipate that extremely bad events can
occur with small probability when such events do not occur in the sample.

8In our Monte-Carlo experiments, we find that the Empirical Likelihood (EL) method of Julliard and
Gosh (2008) gives even more biased estimates (not reported).
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any unit at any time, Yt = At where At is the stochastic technology. Output is perishable.

The law motion of At will be taken to follow a Markov process,

dAt = µ̄Atdt+ σ̄AtdBt + (exp(ν̄)− 1)At−dNt, ν̄ ∈ R, (7)

where Bt is a Brownian motion, and Nt is a Poisson process with arrival rate λ. The jump

size is proportional to its value an instant before the jump, At−, ensuring that At does not

jump negative. The notation At− denotes the left-limit, At− ≡ lims→t As, for s < t.

Suppose ownership of fruit-trees with productivity At is determined at each instant in a

competitive stock market, and the production unit has outstanding one perfectly divisible

equity share. A share entitles its owner to all of the unit’s instantaneous output in t. Shares

are traded at a competitively determined price, Pi,t. Suppose that for the risky asset,

dPi,t = µPi,tdt+ σPi,tdBt + Pi,t−JtdNt (8)

and for a government bill with default risk

dPb,t = Pb,trdt+ Pb,t−DtdNt, where Dt =

{
0 with 1− q

exp(κ)− 1 with q
(9)

is the default risk in case of a disaster, κ < 0 is the (degenerated) size of the default and q

is the probability of default in case of a disaster (cf. Barro, 2006).

Preferences. Consider an economy with a single consumer, interpreted as a representative

“stand in” for a large number of identical consumers. The consumer maximizes discounted

expected life-time utility

U0 ≡ E

∫ ∞

0

e−ρtu(Ct)dt, u′ > 0, u′′ < 0. (10)

Assuming no dividend payments, the consumer’s budget constraint reads

dWt = ((µ− r)wtWt + rWt − Ct) dt+ wtσWtdBt + ((Jt −Dt)wt− +Dt)Wt−dNt, (11)

where Wt is real financial wealth and wt denote a consumer’s share holdings.

Equilibrium properties. In this economy, it is easy to determine equilibrium quantities of

consumption and asset holdings. The economy is closed and all output will be consumed,

Ct = Yt, and all shares will be held by capital owners.

3.1.2 Obtaining the Euler equation

Suppose that the only asset is the market portfolio,

dpM(t) = µMpM(t)dt+ σMpM(t)dBt − ζM(t−)pM(t−)dNt, (12)
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where ζM(t) is considered as an exogenous stochastic jump-size, defining

µM ≡ (µ− r)wt + r, σM ≡ wtσ, ζM(t) ≡ (Dt − Jt)wt −Dt. (13)

The consumer obtains income and has to finance its consumption stream from wealth,

dWt = (µMWt − Ct) dt+ σMWtdBt − ζM(t−)Wt−dNt. (14)

One can think of the original problem with budget constraint (11) as having been reduced

to a simple Ramsey problem, in which we seek an optimal consumption rule given that income

is generated by the uncertain yield of a (composite) asset (cf. Merton, 1973).9

Define the value function as

V (W0) ≡ max
{Ct}∞t=0

U0, s.t. (14), W0 > 0. (15)

Using the Bellman equation (see appendix), we obtain the first-order condition as

u′(Ct) = VW (Wt), (16)

for any t ∈ [0,∞), making consumption a function of the state variable Ct = C(Wt).

It can be shown that the Euler equation is (cf. Posch, 2011)

du′(Ct) =
(
(ρ− µM + λ)u′(Ct)− σ2

MWtu
′′(Ct)CW

−Eζ [u′(C((1− ζM(t))Wt))(1− ζM(t))λ]
)
dt

−πtu
′(Ct)dBt + (u′(C((1− ζM(t−))Wt−))− u′(C(Wt−)))dNt, (17)

which implicitly determines the optimal consumption path, where the traditional market

price of risk can be defined as πt ≡ −σMWtu
′′(Ct)CW/u′(Ct). We defined CW as the marginal

propensity to consume out of wealth, i.e., the slope of the consumption function.

3.1.3 General equilibrium prices

This section shows that general equilibrium conditions pin down the prices in the economy.

We use the stochastic differential for consumption implied by the Euler equation (17) and

the market clearing condition Ct = At together with the exogenous dividend process (7).

Proposition 3.1 (Asset pricing) In general equilibrium, market clearing implies

µM − r = −
u′′(Ct)CWWt

u′(C(Wt))
σ2
M −

u′(eν̄C(Wt))

u′(C(Wt))
((1− eκ)q − ζM)λ (18)

σM = σ̄Ct/(CWWt) (19)

r = ρ−
u′′(Ct)Ct

u′(Ct)
µ̄− 1

2

u′′′(Ct)C
2
t

u′(Ct)
σ̄2 + λ− (1− (1− eκ)q)

u′(eν̄Ct)

u′(Ct)
λ. (20)

9A more comprehensive approach considers the portfolio problem which is available on request.
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as well as implicitly the portfolio jump-size

C((1− ζM(t))Wt) = exp(ν̄)C(Wt). (21)

Proof. cf. appendix

As a result, the higher the subjective rate of time preference, ρ, the higher is the general

equilibrium interest rate to induce individuals to defer consumption (cf. Breeden, 1986). For

convex marginal utility (decreasing absolute risk aversion), u′′′(c) > 0, a lower conditional

variance of dividend growth, σ̄2, and a higher conditional mean of dividend growth, µ̄, and

a higher default probability, q, decrease the bond price and increases the interest rate.

3.1.4 Explicit solutions

As shown in Merton (1971), the standard dynamic consumption and portfolio selection

problem has explicit solutions where consumption is a linear function of wealth. For later

references, we provide the solution for constant relative risk aversion (CRRA).

Proposition 3.2 (CRRA preferences) If utility exhibits constant relative risk aversion,

i.e., −u′′(Ct)Ct/u
′(Ct) = γ, then the optimal consumption function is proportional to wealth,

Ct = C(Wt) = bWt, where b ≡
(
ρ+ λ− (1− γ)µM − (1− ζM)1−γλ+ (1− γ)γ 1

2
σ2
M

)
/γ.

Proof. see Posch (2011)

Corollary 3.3 The implicit risk premium is

RP = γσ̄2 + e−γν̄(1− eν̄)λ. (22)

whereas the disaster risk of the market premium in (18) is e−γν̄ (1− eν̄ − (1− eκ)q)λ.

3.1.5 Stochastic discount factor

This section computes the stochastic discount factor (SDF). We obtain the SDF along the

lines of (5) to (6) from the Euler equation (17), which in general equilibrium is

du′(Ct) = (ρ− r)u′(Ct)dt+ (1− eκ)u′(eν̄Ct)qλdt− (u′(eν̄Ct)− u′(Ct))λdt

−πtu
′(Ct)dBt + (u′(eν̄Ct−)− u′(Ct−))dNt,

where the deterministic term consists firstly of the difference between the subjective rate

of time preference and the riskless rate, secondly a term which transforms this rate into
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the certainty equivalent rate of return (shadow risk-free rate), and thirdly the compensation

which transforms the Poisson process to a martingale. For s ≥ t, we obtain

ms/mt ≡ exp

(
−

∫ s

t

(
ρ−

u′′(Cv)Cv

u′(Cv)
µ̄− 1

2

u′′′(Cv)C
2
v

u′(Cv)
σ̄2 + 1

2
π2

)
dv

)

× exp

(
−

∫ s

t

πtdBv +

∫ s

t

(ln u′(eν̄Ct−)− ln u′(Ct−)) dNv

)
, (23)

as the stochastic discount factor, which can be used to price any asset in this economy. For

the case of CRRA preferences, (23) simplifies to

ms/mt = exp
(
−(r − e−γν̄(1− eκ)qλ+ 1

2
(γσ̄)2 + (e−ν̄γ − 1)λ)(s− t)

)

× exp
(
− γσ̄(Bs −Bt)− γν̄(Ns −Nt)

)
, (24)

where

r = ρ+ γµ̄− 1
2
γ(1 + γ)σ̄2 + λ− (1− (1− eκ)q) e−γν̄λ (25)

is the (shadow) risk-free rate, or the rate of return of any zero-supply riskless security. For

γ < 0 and κ < 0, the presence of rare events increases the risk-free rate of return.

3.1.6 General equilibrium consumption growth rates and asset returns

This section derives consumption growth rates and equilibrium asset returns for various

financial claims. These measures are important for computing Euler equation errors.

Consumption. Consumption growth rates are exogenous in the endowment economy.

Thus, consumption growth rates can be obtained from the dividend process (7),

ln(Cs/Ct) = ln(As/At) = (µ̄− 1
2
σ̄2)(s− t) + σ̄(Bs −Bt) + ν̄(Ns −Nt). (26)

Risky asset. Consider a claim which pays a dividend Xi,t+1 = At+1, i.e., an instantaneous

return in period s = t+ 1. Using the pricing kernel (24) together with (2) implies

Rc,t+1 = exp
(
ρ+ γµ̄− 1

2
γσ̄2 − 1

2
(1− γ)2σ̄2 − (e(1−γ)ν̄ − 1)λ

)

× exp (σ̄(Bt+1 −Bt) + ν̄(Nt+1 −Nt)) . (27)

Riskless asset. From (24) and (2), the equilibrium asset return of any riskless security is

Rf,t+1 = exp
(
r − e−γν̄(1− eκ)qλ

)
. (28)

whereas Rb,t+1 = er+
∫ t+1
t

ln(1+Ds)dNs is the equilibrium return for any riskless asset which is

subject to default risk, e.g., issued exogenously by the government.
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3.2 A production economy with rare events

This section obtains the pricing kernel for an economy where Euler equation errors arise as

a result of rare technological improvements in a production economy (cf. Wälde, 2005). As

before, an extensive discussion of the model and its solution is in Posch (2011).

3.2.1 Description of the economy

Technology. At any time, the economy has some amounts of capital, labor, and knowledge,

and these are combined to produce output. The production function is a constant return to

scale technology Yt = AtF (Kt, L), where Kt is the aggregate capital stock, L is the constant

population size, and At is the stock of knowledge or total factor productivity (TFP), which

is driven by a standard Brownian motion Bt and a Poisson process N̄t with arrival rate λ̄,

dAt = µ̄Atdt+ σ̄AtdBt + (exp(ν̄)− 1)At−dN̄t. (29)

We introduce jumps in TFP as there is empirical evidence of Poisson jumps in output growth

rates which, however, may not necessarily reflect consumption disasters (Posch, 2009).

The capital stock increases if gross investment exceeds stochastic capital depreciation,

dKt = (It − δKt)dt+ σKtdZt + (exp(ν)− 1)Kt−dNt, (30)

in which Zt is a standard Brownian motion (uncorrelated with Bt), and Nt is a Poisson

process with arrival rate λ. The jump size in the capital stock is proportional and has a

degenerated distribution.10 Note that only for σ = ν = 0, the capital stock (physical asset)

is instantaneously riskless (cf. Merton, 1975).

Preferences. Consider an economy with a single consumer, interpreted as a representative

“stand in” for a large number of identical consumers. The consumer maximizes expected

life-time utility

U0 ≡ E0

∫ ∞

0

e−ρtu(Ct)dt, u′ > 0, u′′ < 0 (31)

subject to

dWt = ((rt − δ)Wt + wL
t − Ct)dt+ σWtdZt + JtWt−dNt. (32)

Wt ≡ Kt/L denotes individual wealth, rt is the rental rate of capital, and wL
t is labor income.

The paths of factor rewards are taken as given by the representative consumer.

10As in Cox, Ingersoll and Ross (1985, p.366), individuals can invest in physical production indirectly
through firms or directly, in effect creating their own firms. There is a market for instantaneous borrowing
and lending at the interest rate rt = YK , which is determined as part of the competitive equilibrium of the
economy. There are markets for contingent claims which are all zero-supply assets in equilibrium.
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Equilibrium properties. In equilibrium, factors of production are rewarded with value

marginal products, rt = YK and wL
t = YL. The goods market clearing condition demands

Yt = Ct + It. (33)

Solving the model requires the aggregate capital accumulation constraint (30), the goods

market equilibrium (33), equilibrium factor rewards of perfectly competitive firms, and the

first-order condition for consumption. It is a system of stochastic differential equations

determining, given initial conditions, the paths of Kt, Yt, rt, w
L
t and Ct, respectively.

3.2.2 Obtaining the Euler equation

Define the value function as

V (W0, A0) = max
{Ct}∞t=0

U0 s.t. (32) and (29), (34)

denoting the present value of expected utility along the optimal program. Using the Bellman

equation similar to the endowment economy, we obtain the first-order condition as

u′(Ct) = VW (Wt, At), (35)

for any t ∈ [0,∞), making consumption a function of the state variables Ct = C(Wt, At).

It can be shown that the Euler equation is (cf. appendix)

du′(Ct) = (ρ− (rt − δ) + λ+ λ̄)u′(Ct)dt− u′(C(eνWt, At))e
νλdt− u′(C(Wt, e

ν̄At))λ̄

−σ2u′′(Ct)CWWtdt+ u′′(Ct)(CAAtσ̄dBt + CWWtσdZt)

+[u′(C(Wt−, e
ν̄At−))− u′(C(Wt−, At−))]dN̄t

+[u′(C(eνWt−, At−))− u′(C(Wt−, At−))]dNt, (36)

which implicitly determines the optimal consumption path. Comparing to the Euler equation

in the endowment economy (17), the stochastic discount factor implied by (36) now has richer

dynamics with time-varying interest rates and two sources of low-probability events.

3.2.3 General equilibrium prices

Note that physical capital is the only asset that is held in equilibrium, henceforth the market

portfolio. Since all other assets are zero-supply assets, we can price any financial claim as if

they were traded assets using the stochastic discount factor.

12



3.2.4 Explicit solutions

A convenient way to describe the behavior of the economy is in terms of the evolution of

Ct, At and Wt. Similar to the endowment economy there are explicit solutions available,

due to the non-linearities only for specific parameter restrictions. Below we use two known

restrictions where the policy function Ct = C(At,Wt) (or consumption function) is available,

and many economic variables can be solved in closed form.

Proposition 3.4 (linear-policy-function) If the production function is Cobb-Douglas,

Yt = AtK
α
t L

1−α, utility exhibits constant relative risk aversion, i.e., −u′′(Ct)Ct/u
′(Ct) = γ,

and α = γ, then optimal consumption is linear in wealth.

α = γ ⇒ Ct = C(Wt) = φWt

where φ ≡ (ρ− (e(1−γ)ν − 1)λ+ (1− γ)δ)/γ + 1
2
(1− γ)σ2 (37)

Proof. see appendix

Corollary 3.5 The implicit risk premium is

RP |α=γ = γσ2 + e−γν(1− eν)λ. (38)

Proposition 3.6 (constant-saving-function) If the production function is Cobb-Douglas,

Yt = AtK
α
t L

1−α, utility exhibits constant relative risk aversion, i.e., −u′′(Ct)Ct/u
′(Ct) = γ,

and the subjective discount factor is

ρ̄ ≡ (e−θν̄ − 1)λ̄+ (e(1−αγ)ν − 1)λ− γµ̄+ 1
2

(
γ(1 + γ)σ̄2 − αγ(1− αγ)σ2

)
− (1− αγ)δ,

then optimal consumption is proportional to current income (i.e., non-linear in wealth).

ρ = ρ̄ ⇒ Ct = C(Wt, At) = (1− s)AtW
α
t , γ > 1, where s ≡ 1/γ (39)

Proof. see appendix

Corollary 3.7 The implicit risk premium is

RP |ρ=ρ̄ = αγσ2 + e−αγν(1− eν)λ. (40)

It is interesting to note that the market premium (or implicit risk premium) does not reward

the risk associated with a stochastic TFP process. The intuitive reason is that at the

aggregate level all contingent claims are in zero supply. Hence, the only asset that affects

the intertemporal investment opportunities of the market is the physical asset.
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3.2.5 Stochastic discount factor

Similar to the endowment economy, the SDF is obtained along the lines of (5) to (6) from

the Euler equation (36). For s ≥ t, we obtain

ms/mt = exp

(
−

∫ s

t

(
rl − δ − λ− λ̄+

u′(C(eνWl, Al))

u′(C(Wl, Al))
eνλ+

u′(C(Wl, e
ν̄Al))

u′(C(Wl, Al))
λ̄

)
dl

+
u′′(Cl)CWWl

u′(Cl)
σ2dl − 1

2

∫ s

t

(u′′(Cl))
2

(u′(Cl))2
((CAAlσ̄)

2 + (CWWlσ)
2)dl

+

∫ s

t

u′′(Cl)

u′(Cl)
(CAAlσ̄dBl + CWWlσdZl)

+

∫ s

t

ln

(
u′(C(eνWl−, Al−))

u′(C(Wl−, Al−))

)
dNl +

∫ s

t

ln

(
u′(C(Wl−, e

ν̄Al−))

u′(C(Wl−, Al−))

)
dN̄l

)

as the stochastic discount factor, which can be used to price any asset in this economy. For

the case of CRRA preferences we obtain for our closed-form solutions,

ms/mt|α=γ = exp

(
−

∫ s

t

(rl − δ)dl + [λ− e(1−γ)νλ+ γσ2 − 1
2
(γσ)2](s− t)

)

× exp (−γσ(Zs − Zt)− γν(Ns −Nt)) , (41)

ms/mt|ρ=ρ̄ = exp

(
−

∫ s

t

(rl − δ)dl + [(1− e(1−αγ)ν)λ+ (1− e−γν̄)λ̄](s− t)

)

× exp
(
[γασ2 − 1

2
(γσ̄)2 − 1

2
(αγσ)2](s− t)− γσ̄(Bs −Bt)

)

× exp
(
−αγσ(Zs − Zt)− αγν(Ns −Nt)− γν̄(N̄s − N̄t)

)
. (42)

In the general case, the implicit risk premium will be time-varying and asymmetric over the

business cycle (Posch, 2011). This also implies that the SDF is no longer available in closed

form, which complicates any Monte Carlo study without generating new insights.

3.2.6 General equilibrium consumption growth rates and asset returns

This section derives consumption growth rates and equilibrium asset returns for various

financial claims. We focus on two parametric restrictions under which consumption, the

pricing kernel, as well as asset returns on various claims are available in closed form. This

strategy greatly simplifies our effort later to compute Euler equation errors.

Consumption. In contrast to the endowment economy, the (neoclassical) production

economy introduces transitional dynamics, which imply that consumption growth rates, at

least transitionally, are endogenous and will depend on the specific solution.

Given the closed-form solutions as of Propositions 3.4 and 3.6, it is straightforward to
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obtain consumption growth rates (cf. appendix),

ln(Cs/Ct)|α=γ = 1/α

∫ s

t

rvdv − (φ+ δ + 1
2
σ2)(s− t) + σ(Zs − Zt) + ν(Ns −Nt). (43)

ln(Cs/Ct)|ρ=ρ̄ = 1/γ

∫ s

t

rvdv + (µ̄− 1
2
σ̄2 − αδ − 1

2
ασ2)(s− t) + σ̄(Bs −Bt)

+ασ(Zs − Zt) + αν(Ns −Nt) + ν̄(N̄s − N̄t). (44)

Risky assets. Asset prices in this economy are driven by the rental rate of physical capital.

For our parametric restriction, we obtain these capital rewards in closed-form. As shown in

the appendix, the dynamics for the rental rate of capital are given by

drt = c1
(
c2 − rt

)
rtdt+ (α− 1)σrtdZt + σ̄rtdBt + (exp((α− 1)ν)− 1)rt−dNt

+(exp(ν̄)− 1)rt−dN̄t. (45)

This result is remarkable as it implies a specific structure for a tendency of this rate towards

some equilibrium value c2 at the speed of reversion of c1 (cf. Posch, 2009),

c1|α=γ ≡ 1−α
α

, c2|α=γ ≡ αφ+ αδ − 1
2
α(α− 2)σ2 − α

α−1
µ̄,

c1|ρ=ρ̄ ≡ 1−α
αγ

, c2|ρ=ρ̄ ≡ αγδ − 1
2
αγ(α− 2)σ2 − αγ

α−1
µ̄.

Consider a risky bond that pays continuously at the rate, rt. Investing into this asset

gives the random dividend process Xb,t+1 = e
∫ t+1
t

rsds. Using the pricing kernels (41) or (42)

together with (2) implies

Rb,t+1|α=γ = exp

(∫ t+1

t

(rs − δ)ds− (γσ2 + e−γν(1− eν)λ)

)
, (46)

Rb,t+1|ρ=ρ̄ = exp

(∫ t+1

t

(rs − δ)ds− (γασ2 + e−αγν(1− eν)λ)

)
. (47)

Consider a claim on output which pays Xc,t+1 = At+1K
α
t+1, i.e., an instantaneous return

in period s = t+1. As shown in the appendix, for the case of α = γ, we obtain a closed-form

expression for the asset’s return,

Rc,t+1|α=γ = exp

(∫ t+1

t

(rs − δ)ds− 1
2
σ̄2 − λ+ e(1−γ)νλ− γσ2 + 1

2
(γσ)2 − (eν̄ − 1)λ̄

)

× exp
(
σ̄(Bt+1 − Bt) + ασ(Zt+1 − Zt) + αν(Nt+1 −Nt) + ν̄(N̄t+1 − N̄t)

)
, (48)

Similarly, consider a claim on capital, which pays Xc,t+1 = Kαγ
t+1 at date s = t + 1. This

particular function has been chosen in order to get a closed-form expression in the case where

ρ = ρ̄, which turns out to be

Rc,t+1|ρ=ρ̄ = exp

(∫ t+1

t

(rs − δ)ds− λ+ e(1−αγ)νλ− γασ2 + 1
2
(αγσ)2

)

× exp (αγσ(Zt+1 − Zt) + αγν(Nt+1 −Nt)) . (49)
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In what follows, the equilibrium consumption growth rates and asset returns are employed

to compute Euler equation errors in the production economy.

4 Results

This section computes Euler equation (EE) errors in endowment and production economies.

It shows that the Barro-Rietz ‘rare disaster hypothesis’ generates large pricing errors. It

also shows that the standard approach of estimating the parameters of relative risk aversion

and time preference is severely affected in samples where the rare events anticipated by

consumers do not occur (cf. Hansen and Jagannathan, 1991, p.250).

4.1 Euler equation errors in finite samples

We illustrate the approach of computing EE errors using the endowment economy. A similar

approach is applicable to production economies using our closed-form solutions. Consider

two assets, i.e., the government bill, Rb,t+1, and the claim on dividends, Rc,t+1.

From the definition of EE errors (3), for any asset i and CRRA preferences

eiR = Et

[
e−ρ−γµ̄+ 1

2
γσ̄2−γσ̄(Bt+1−Bt)−γν̄(Nt+1−Nt)Ri,t+1

]
− 1, (50)

where we inserted the SDF from (24) and the (shadow) risk-free rate (25). Note that EE

errors based on excess returns can be obtained from eiX = eiR − ebR for any asset i.

Risky asset. Inserting the one-period equilibrium return on the risky asset gives

ecR = Et

[
e−

1
2
(1−γ)2σ̄2−(e(1−γ)ν̄−1)λ+(1−γ)σ̄(Bt+1−Bt)+(1−γ)ν̄(Nt+1−Nt)

]
− 1.

Conditional on no disasters, on average we can rationalize EE errors

ecR|Nt+1−Nt=0 = Et

[
e−

1
2
(1−γ)2σ̄2−(e(1−γ)ν̄−1)λ+(1−γ)σ̄(Bt+1−Bt)

]
− 1

= exp
(
−(e(1−γ)ν̄ − 1)λ

)
− 1. (51)

For Barro’s calibration of λ = 0.017, ν̄ = −0.4, the absolute EE error is about 3.9% for

γ = 4 and further increases with risk aversion. Hence, we argue that the EE error can be

large in finite samples. We therefore cannot rule out that empirical pricing errors measure

disaster risk, as the probability of no disaster occurring in a randomly selected sample of

T = 50 years is p(Nt+T −Nt = 0) = e−λT = 43%.

Riskless asset. Inserting the one-period equilibrium returns on the government bill and

the truly riskless asset (q = 0), we obtain EE errors

ebR = Et

[
ee

−γν̄(1−eκ)qλ−(e−ν̄γ−1)λ− 1
2
(γσ̄)2−γσ̄(Bt+1−Bt)−γν̄(Nt+1−Nt)+

∫ t+1
t

ln(1+Ds)dNs

]
− 1,

efR = Et

[
e−( 1

2
(γσ̄)2+(e−ν̄γ−1)λ)−γσ̄(Bt+1−Bt)−γν̄(Nt+1−Nt)

]
− 1.
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Conditional on no disasters, on average we can rationalize EE errors

ebR|Nt+1−Nt=0 = exp
(
−(e−ν̄γ − 1)λ+ e−γν̄(1− eκ)qλ

)
− 1, (52)

efR|Nt+1−Nt=0 = exp
(
−(e−ν̄γ − 1)λ

)
− 1. (53)

Obviously, the presence of default risk reduces the EE error in quiet times for that particular

asset. Neither the disaster nor the default occurred in the sample.

For the production economy, we would obtain for the risky bond (cf. appendix)

ebR|Nt+1−Nt=0|α=γ = exp
(
(1− e−νγ)λ

)
− 1, (54)

ebR|Nt+1−Nt=0|ρ̄=ρ = exp
(
(1− e−αγν)λ

)
− 1. (55)

The claims on capital and output do not generate persistent pricing errors as long as there

are no rare events in total factor productivity (as in Wälde, 2005). In such cases,

ecR|N̄t+1−N̄t=0|α=γ = exp
(
(1− eν̄)λ̄

)
− 1,

ecR|N̄t+1−N̄t=0|ρ=ρ̄ = exp
(
(1− e−γν̄)λ̄

)
− 1.

Two remarks are noteworthy. First, the particular assets were chosen to obtain analytical

expressions for EE errors. In general – conditional on no disasters – claims on assets or

technology may also produce substantial pricing errors. Second, based on excess returns we

may rationalize EE errors for the claims on capital and output, ecX = ecR − ebR.

Finally, the root mean square error (RMSE) is the average Euler equation errors across

both assets – in our case the excess return and the bill return – and observation periods,

RMSE =

(
1

T

T∑

t=1

[
1
2
(ecX,t)

2 + 1
2
(ebR,t)

2
]) 1

2

. (56)

We may interpret the RMSE as the average pricing error based on the two assets.

4.2 Estimated Euler equation errors

We illustrate the implications for the estimated Euler equation errors for the endowment

economy. A similar derivation can be conducted out for the production economy. Consider

the government bill, Rb,t+1, and the claim on dividends, Rc,t+1.

Using estimated EE errors in (4), for any asset i and CRRA preferences

êiR = Et

[
e−ρ̂−γ̂µ̄+ 1

2
γ̂σ̄2−γ̂σ̄(Bt+1−Bt)−γ̂ν̄(Nt+1−Nt)Ri,t+1

]
− 1,

where we inserted the equilibrium consumption growth rate from (26). The estimated EE

errors for excess returns can be obtained from êiX = êiR − êbR for any asset i.
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Risky asset. Conditional on no disasters, the estimated EE errors for the one-period

equilibrium return on the risky claim are

êcR|Nt+1−Nt=0 = Et

[
eρ−ρ̂+(γ−γ̂)(µ̄− 1

2
σ̄2)− 1

2
(1−γ)2σ̄2−(e(1−γ)ν̄−1)λ+(1−γ̂)σ̄(Bt+1−Bt)

]
− 1

= exp
(
ρ− ρ̂+ (γ − γ̂)(µ̄− 1

2
σ̄2)− 1

2
((1− γ)2 − (1− γ̂)2)σ̄2

)

× exp
(
−(e(1−γ)ν̄ − 1)λ

)
− 1. (57)

The result in (57) clearly shows that in order to minimize the estimated EE errors, the

parameter estimates are biased as long as (e(1−γ)ν̄ − 1)λ 6= 0.

Riskless asset. Conditional on no disasters, the estimated EE errors for the one-period

equilibrium return the government bill are

êbR|Nt+1−Nt=0 = Et

[
er−r̂− 1

2
(γ̂σ̄)2−γ̂σ̄(Bt+1−Bt)

]
− 1

= exp
(
ρ− ρ̂+ (γ − γ̂)(µ̄− 1

2
σ̄2)− (γ2 − γ̂2)1

2
σ̄2
)

× exp
(
−((1− (1− eκ)q) e−γν̄ − 1)λ

)
− 1, (58)

where r̂ ≡ ρ̂ + γ̂µ̄ − 1
2
γ̂(1 + γ̂)σ̄2 is the risk-free rate in a world in which rare disasters

happen not to occur. In fact, the effect of rare disasters on the equilibrium risk-free rate,

λ− (1− (1− eκ)q) e−γν̄λ, will be captured by r − r̂ through biased estimates of ρ and γ.

4.3 The performance of the C-CAPM

In the standard C-CAPM estimation, GMM chooses ρ̂ and γ̂ such as to minimize the EE

errors across assets (e.g., Lettau and Ludvigson, 2009). In particular, we encounter the

square root of the average EE errors for the tth observation,

R̂MSEt =

√
1
2

(
êcX,t

)2
+ 1

2

(
êbR,t

)2
.

Consider now the case of rare disasters, i.e., ν̄ < 0 (and κ < 0). Now the EE error for the

risky claim (conditional on no disasters) in (51) on average is positive for γ < 1, whereas

negative for γ > 1. Further, for the government bill (conditional on no disasters) in (52)

on average is unambiguously negative as the risk free rate is biased downwards. Therefore,

the minimization procedure tends γ̂ and ρ̂ towards values such that they increase r̂ in (58),

taking account for the effects on the estimated EE errors in (57).11

11In order to minimize (57) and (58), both equations should hold simultaneously,

ρ− ρ̂+ (γ − γ̂)(µ̄− 1
2 σ̄

2)− 1
2 ((1− γ)2 − (1− γ̂)2)σ̄2 ≈ (e(1−γ)ν̄ − 1)λ,

ρ− ρ̂+ (γ − γ̂)(µ̄− 1
2 σ̄

2)− (γ2 − γ̂2) 12 σ̄
2 ≈ ((1− (1− eκ)q) e−γν̄ − 1)λ.

Hence, in order to minimize Euler equation errors, the GMM procedure tends to bias both ρ̂ and γ̂.
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5 Monte Carlo experiments

In this section we provide Monte Carlo evidence on the impact of low-probability events

on the performance of the consumption-based asset pricing model. In particular, we seek a

better understanding of how the estimated parameters and pricing errors are affected by the

presence of rare disasters. In what follows we describe the general setup of this analysis and

report our simulation results.

5.1 The simulation approach

We first simulate equilibrium asset prices and consumption paths from the parameterized

consumption-based models with rare events (cf. Tables 1 and 2).12 We consider both the

endowment economy and the production economy for which we derive analytical expressions

for asset prices. Consistent with the sample size in empirical studies of the C-CAPM, the

simulated sample paths have a length of 50 years using 5,000 Monte Carlo draws.13

The idea is to study whether we are able to reproduce the empirical failure of the C-CAPM

in simulated data generated from economies which are infrequently hit by rare disasters. We

consider a standard power utility C-CAPM pricing kernel whose parameters an econometri-

cian would estimate when he or she is confronted with artificial data similar to Lettau and

Ludvigson (2009). We are mainly interested whether the estimated C-CAPM generates EE

errors using the simulated series. In other words, does a wrongly specified pricing kernel

– despite biased estimates for the time preference and risk aversion parameter – generate

EE errors or not? This is of particular interest since leading asset pricing models such as

the long-run risk model (Bansal and Yaron, 2004), the habit formation model (Campbell

and Cochrane, 1999), and the limited participation model (Guvenen, 2009) fail to produce

substantial pricing errors. As such, these theories are not able to explain one important

dimension of failure of the canonical model. Moreover, we shed light on the performance

of C-CAPM (regarding the bias and plausibility of estimated structural parameters) in the

presence of rare events, more generally.

5.2 The simulation results

In Tables 4 to 10 we show the results from the Monte-Carlo simulations (cf. Appendix A).

Our main quantities of interest are the average pricing error (RMSE), i.e., the rational EE

errors, the empirical pricing errors (R̂MSE), i.e., a measure of estimated EE errors, and the

12The parameterization follows the literature on rare disasters in endowment and production economies
(see e.g., Barro, 2009, Wachter, 2009, and Posch, 2009).

13The simulated data is sampled at quarterly frequency (e.g., Lettau and Ludvigson, 2001).
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Table 1: Parameterization (endowment economy)

(1) (2) (3) (4) (5)

ρ rate of time preference 0.03 0.03 0.03 0.03 0.03
γ coef. of relative risk aversion 0.5 4 4 4 4
µ̄ consumption growth 0.01 0.01 0.01 0.01 0.01
σ̄ consumption noise 0.005 0.005 0.005 0.005 0.005

−ν̄ size of consumption disaster 0.4 0.4 0.55 0.4 0
λ̄ consumption disaster probability 0.017 0.017 0.017 0.017 0

−κ size of government default 0 0 0 0.3 0
q default probability 0 0 0 0.5 0

Table 2: Parameterization (production economy)

(1) (2) (3) (4) (5)

ρ rate of time preference 0.03 0.024 0.017 0.016 0.03
γ coef. of relative risk aversion 0.5 4 4 4 4
α output elasticity of capital 0.5 0.6 0.6 0.6 0.6
δ capital depreciation 0.025 0.025 0.025 0.025 0.05
µ̄ productivity growth 0.02 0.01 0.01 0.01 0.01
σ̄ productivity noise 0.01 0.01 0.01 0.01 0.01

−ν̄ size of productivity slump 0.01 0.01 0.01 0 0
λ̄ productivity jump probability 0.2 0.2 0.2 0 0
σ capital stochastic depreciation 0.005 0.005 0.005 0.005 0.005

−ν size of capital disaster 0.55 0.55 0.4 0.55 0
λ capital disaster probability 0.017 0.017 0.017 0.017 0
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respective structural parameter estimates β̂ and γ̂ obtained by estimating a standard power

utility C-CAPM to the simulated data. In addition, we report the distributional properties

of asset returns, equity premium, and consumption growth (in annualized percentage terms).

For reading convenience, we report results conditional on the case of no disasters, i.e., only

for those cases in which no disaster happened to occur over the 50 year period even though

such diasters were expected by the consumers ex-ante (also known as ‘Peso problem’).14

Conditioning on no disasters case may be regarded as similar to studying a sample period such

as the post-war period in the U.S. without major consumption disasters (Barro, 2006). Those

simulations, however, may include more frequent low-probability events such as ‘smaller’

jumps in productivity similar to Posch (2009). As benchmark cases, Tables 6 and 11 report

the estimation results for the standard C-CAPM model without Poisson uncertainty.

Our results support our claim that rare events can have a strong impact on the estimates

of structural parameters and pricing errors. For example, the endowment economy in Table

4 on average generates parameter estimates of β̂ = 1.6 and γ̂ = 282.4 as compared to

β̂ = 1.5 and γ̂ = 123.0 in the data. While we do not find (estimated) pricing errors of the

C-CAPM in the endowment economy, we find substantial pricing errors in the production

economy. Our results in Tables 8 to 10 show that the C-CAPM (with power utility) generates

large pricing errors on average between 1% and 3% (indicated by R̂MSE in the tables), of

similar size as 2.5% in the data. Thus, departures from log-normality in the cases where we

conditioned on no disasters, e.g., through a stochastically changing investment opportunities

in the production economy, seem to be important to generate estimated EE errors.

Our economies with rare events are calibrated to very reasonable values of 4 for the

coefficient of relative risk-aversion and 0.97 for the subjective time discount factor.15 Yet, if

anticipated consumption disasters do not occur in sample, we observe severely biased and

implausible parameter estimates that are well-known from empirical results in the literature.

Our simulation-based evidence therefore suggests that such biased and implausible parameter

estimates of structural preference parameters of the C-CAPM are not surprising in a world

where agents are concerned about rare negative consumption shocks.

To summarize, unlike models of habit formation and/or long-run risk we refer to in the

introduction, models incorporating rare disasters are able to solve the EE puzzle by Lettau

and Ludvigson (2009). At the same time, we find a severe bias in parameter estimates of

the subjective time discount factor and the coefficient of relative risk aversion (RRA) for

cases in which consumption disasters do not occur in the sample. Our results suggest that

14A separate Referee’s appendix has unconditional simulation results and is available on request.
15We encounter problems of convergence of the GMM procedure for the case of extreme values for the

disaster size and the parameter of relative risk aversion (e.g., parameterization (3) in Table 1). To avoid
that pricing errors simply show convergence problems, these cases are discarded in the Monte Carlo study.

21



the Barro-Rietz rare disaster hypothesis together with a stochastically changing investment

opportunity set is able to account for the empirical failures of the C-CAPM.

6 Conclusion

In this paper we study the impact of rare disasters (such as wars or natural catastrophes) on

Euler equation (EE) errors and the empirical performance of the consumption-based asset

pricing model in general. For this purpose, we derive analytical asset pricing implications

and EE errors both in an endowment as well as a production economy with stochastically

occurring disasters. In extensive simulations we also investigate the impact of rare disasters

on estimates of structural parameters of the consumption-based model and the empirical

performance of the model. Thus, our paper seeks to provide a better understanding of why

the standard model fails so dramatically when fitted to the data.

Allowing for low-probability events in an otherwise standard C-CAPM explains why

the canonical model generates large and persistent pricing errors when confronted by the

data. Hence, consumption-based models with rare disasters (Barro, 2006; Gabaix, 2008,

2012) qualify as a class of models which rationalize the Euler equations puzzle of Lettau

and Ludvigson (2009). We show analytically and through simulations based on realistic

calibrations that the poor empirical performance and implausible estimates of risk aversion

and time preference are not puzzling in a world with rare disasters. Our results therefore

suggest that the Barro-Rietz rare disaster hypothesis together with a stochastically changing

investment opportunity set is able to account for one of the most puzzling empirical failure

of the C-CAPM, i.e., the large and persistent empirical pricing errors.
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A Tables and Figures

Figure 1: General equilibrium asset returns
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Notes: This figure illustrates the equilibrium asset returns and shows one realization of the return to the relatively riskless
asset and the risky asset in the endowment economy (upper two panels, parameterization (2) in Table 1) and the production
economy (lower two panels, parameterization (2) in Table 2), respectively.
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Table 3: C-CAPM simulation results (endowment economy)

Results analytical solution conditional (no disasters)
parameterization (1) Mean Std. dev. Mode Median

β factor of time preference 0.97
γ coef. of relative risk aversion 0.50

ebR EE error risky bond −0.38 0.04 −0.39 −0.38
ecX EE error excess return 0.68 0.07 0.65 0.68

RMSE root mean square error 0.55 0.06 0.52 0.55

Observed random variables

Rb,t+1 bill return 3.13 0.00 3.00 3.13
Rc,t+1 equity return 3.83 0.07 3.78 3.83

Rc,t+1 −Rb,t+1 equity premium 0.69 0.07 0.70 0.69
ln(Ct+1/Ct) consumption growth 1.00 0.07 1.01 1.00

Parameter estimates

β̂ factor of time preference 1.58 0.15 1.51 1.57
γ̂ coef. of relative risk aversion 282.37 46.28 263.25 278.44

êbR EE error risky bond 0.00 0.00 0.00 0.00

êcX EE excess return 0.00 0.00 0.00 0.00

R̂MSE root mean square error 0.00 0.00 0.00 0.00
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Table 4: C-CAPM simulation results (endowment economy, 37% converged)

Results analytical solution conditional (no disasters)
parameterization (2) Mean Std. dev. Mode Median

β factor of time preference 0.97
γ coef. of relative risk aversion 4.00

ebR EE error risky bond −6.62 0.28 −6.61 −6.62
ecX EE error excess return 2.73 0.07 2.76 2.73

RMSE root mean square error 5.06 0.20 5.06 5.06

Observed random variables

Rb,t+1 bill return 0.25 0.00 0.30 0.25
Rc,t+1 equity return 3.04 0.07 3.02 3.04

Rc,t+1 −Rb,t+1 equity premium 2.79 0.07 2.81 2.79
ln(Ct+1/Ct) consumption growth 0.99 0.07 0.99 0.99

Parameter estimates

β̂ factor of time preference 0.19 0.19 0.00 0.12
γ̂ coef. of relative risk aversion 1425.00 511.77 1037.50 1318.40

êbR EE error risky bond 0.00 0.00 0.00 0.00

êcX EE excess return 0.00 0.00 0.00 0.00

R̂MSE root mean square error 0.00 0.00 0.00 0.00
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Table 5: C-CAPM simulation results (endowment economy)

Results analytical solution conditional (no disasters)
parameterization (4) Mean Std. dev. Mode Median

β factor of time preference 0.97
γ coef. of relative risk aversion 4.00

ebR EE error risky bond −5.59 0.28 −5.48 −5.59
ecX EE error excess return 1.66 0.07 1.66 1.66

RMSE root mean square error 4.12 0.20 4.04 4.12

Observed random variables

Rb,t+1 bill return 1.35 0.00 1.50 1.35
Rc,t+1 equity return 3.05 0.07 3.05 3.05

Rc,t+1 −Rb,t+1 equity premium 1.70 0.07 1.70 1.70
ln(Ct+1/Ct) consumption growth 1.00 0.07 1.00 1.00

Parameter estimates

β̂ factor of time preference 1.17 0.17 1.21 1.19
γ̂ coef. of relative risk aversion 804.64 244.70 752.50 754.20

êbR EE error risky bond 0.00 0.00 0.00 0.00

êcX EE excess return 0.00 0.00 0.00 0.00

R̂MSE root mean square error 0.00 0.00 0.00 0.00
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Table 6: C-CAPM simulation results (endowment economy)

Results analytical solution unconditional
parameterization (5) Mean Std. dev. Mode Median

β factor of time preference 0.97
γ coef. of relative risk aversion 4.00

ebR EE error risky bond 0.00 0.29 0.06 0.00
ecX EE error excess return 0.00 0.07 −0.02 0.00

RMSE root mean square error 0.17 0.13 0.09 0.14

Observed random variables

Rb,t+1 bill return 7.04 0.00 7.50 7.04
Rc,t+1 equity return 7.05 0.07 7.06 7.05

Rc,t+1 −Rb,t+1 equity premium 0.01 0.07 0.01 0.01
ln(Ct+1/Ct) consumption growth 1.00 0.07 0.98 1.00

Parameter estimates

β̂ factor of time preference 1.00 0.07 0.98 0.99
γ̂ coef. of relative risk aversion 3.73 29.37 9.25 3.64

êbR EE error risky bond 0.00 0.00 0.00 0.00

êcX EE excess return 0.00 0.00 0.00 0.00

R̂MSE root mean square error 0.00 0.00 0.00 0.00
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Table 7: C-CAPM simulation results (production economy)

Results linear-policy-function, conditional (no disasters)
parameterization (1) Mean Std. dev. Mode Median

β factor of time preference 0.97
γ coef. of relative risk aversion 0.50

ebR EE error risky bond −0.54 0.04 −0.53 −0.54
ecX EE error excess return 0.53 0.15 0.60 0.53

RMSE root mean square error 0.54 0.08 0.58 0.54

Observed random variables

Rb,t+1 bill return (gross) 4.32 0.12 4.34 4.32
Rc,t+1 equity return (gross) 4.86 0.26 4.86 4.86

Rc,t+1 −Rb,t+1 equity premium 0.54 0.15 0.56 0.54
ln(Ct+1/Ct) consumption growth 3.67 0.23 3.71 3.67

Parameter estimates

β̂ factor of time preference 35.42 43.13 6.25 18.44
γ̂ coef. of relative risk aversion 385.45 148.95 312.50 366.28

êbR EE error risky bond 0.00 0.00 0.00 0.00

êcX EE excess return 0.04 0.11 0.00 0.00

R̂MSE root mean square error 0.03 0.08 0.00 0.00
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Table 8: C-CAPM simulation results (production economy)

Results constant-saving-function, conditional (no disasters)
parameterization (2) Mean Std. dev. Mode Median

β factor of time preference 0.98
γ coef. of relative risk aversion 4.00

ebR EE error risky bond −4.62 0.65 −4.68 −4.61
ecX EE error excess return 4.64 0.17 4.68 4.64

RMSE root mean square error 4.64 0.35 4.62 4.63

Observed random variables

Rb,t+1 bill return (gross) 6.42 0.39 6.43 6.42
Rc,t+1 equity return (gross) 11.21 0.40 11.35 11.20

Rc,t+1 −Rb,t+1 equity premium 4.79 0.17 4.77 4.78
ln(Ct+1/Ct) consumption growth 2.19 0.24 2.09 2.19

Parameter estimates

β̂ factor of time preference 0.80 0.64 0.00 0.86
γ̂ coef. of relative risk aversion 474.36 442.44 175.00 327.02

êbR EE error risky bond −0.03 0.02 0.00 −0.04

êcX EE excess return 3.42 1.31 0.00 3.90

R̂MSE root mean square error 2.42 0.93 0.00 2.76
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Table 9: C-CAPM simulation results (production economy)

Results constant-saving-function, conditional (no disasters)
parameterization (3) Mean Std. dev. Mode Median

β factor of time preference 0.98
γ coef. of relative risk aversion 4.00

ebR EE error risky bond −2.56 0.64 −2.88 −2.56
ecX EE error excess return 2.68 0.17 2.72 2.68

RMSE root mean square error 2.64 0.34 2.52 2.63

Observed random variables

Rb,t+1 bill return (gross) 7.68 0.38 7.61 7.67
Rc,t+1 equity return (gross) 10.44 0.40 10.46 10.44

Rc,t+1 −Rb,t+1 equity premium 2.77 0.17 2.80 2.77
ln(Ct+1/Ct) consumption growth 2.19 0.24 2.23 2.19

Parameter estimates

β̂ factor of time preference 0.75 0.61 0.00 0.68
γ̂ coef. of relative risk aversion 453.07 361.70 195.00 344.39

êbR EE error risky bond −0.01 0.01 0.00 −0.01

êcX EE excess return 1.33 1.01 0.00 1.65

R̂MSE root mean square error 0.94 0.72 0.00 1.17
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Table 10: C-CAPM simulation results (production economy)

Results constant-saving-function, conditional (no disasters)
parameterization (4) Mean Std. dev. Mode Median

β factor of time preference 0.98
γ coef. of relative risk aversion 4.00

ebR EE error risky bond −4.49 0.58 −4.39 −4.49
ecX EE error excess return 4.63 0.17 4.69 4.63

RMSE root mean square error 4.57 0.32 4.47 4.56

Observed random variables

Rb,t+1 bill return (gross) 6.86 0.35 6.81 6.86
Rc,t+1 equity return (gross) 11.63 0.37 11.88 11.63

Rc,t+1 −Rb,t+1 equity premium 4.78 0.18 4.83 4.78
ln(Ct+1/Ct) consumption growth 2.50 0.22 2.55 2.50

Parameter estimates

β̂ factor of time preference 0.88 0.87 0.00 0.57
γ̂ coef. of relative risk aversion 806.11 661.98 325.00 590.05

êbR EE error risky bond −0.03 0.02 0.00 −0.03

êcX EE excess return 2.82 1.45 0.00 3.31

R̂MSE root mean square error 1.99 1.03 0.00 2.34
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Table 11: C-CAPM simulation results (production economy)

Results constant-saving-function, conditional (no disasters)
parameterization (5) Mean Std. dev. Mode Median

β factor of time preference 0.97
γ coef. of relative risk aversion 4.00

ebR EE error risky bond 0.08 0.61 −0.10 0.08
ecX EE error excess return −0.06 0.17 −0.03 −0.06

RMSE root mean square error 0.37 0.25 0.16 0.32

Observed random variables

Rb,t+1 bill return (gross) 13.21 0.48 13.10 13.20
Rc,t+1 equity return (gross) 13.17 0.48 13.10 13.17

Rc,t+1 −Rb,t+1 equity premium −0.04 0.17 −0.08 −0.04
ln(Ct+1/Ct) consumption growth 2.50 0.25 2.46 2.49

Parameter estimates

β̂ factor of time preference 0.92 0.30 0.84 0.90
γ̂ coef. of relative risk aversion −12.52 55.94 −17.00 −11.75

êbR EE error risky bond 0.00 0.00 0.00 0.00

êcX EE excess return 0.00 0.01 0.00 0.00

R̂MSE root mean square error 0.00 0.01 0.00 0.00
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B Appendix

B.1 Computing moments

B.1.1 A lemma for E
(
ckNs

)

The following lemmas are required to compute the stochastic discount factor in the text.16

Lemma B.1 The conditional mean of ckNs conditioned on the information set at time t is

Et

[
ckNs

]
= ckNte(c

k−1)λ(s−t), s > t, c, k = const.

Note that for integer k, these are the raw moments of cNs .

Proof. We can trivially rewrite ckNs = ckNtc(Ns−Nt)k. Thus, Et

[
ckNs

]
= ckNtEt

[
c(Ns−Nt)k

]
.

Computing this expectation requires the probability that a Poisson process jumps n times

between t and s. Formally,

Et

[
c(Ns−Nt)k

]
=

∞∑

n=0

ckn
e−λ(s−t)[(s− t)λ]n

n!
=

∞∑

n=0

e−(s−t)λ[(s− t)ckλ]n

n!

= e(s−t)(ck−1)λ

∞∑

n=0

e−(s−t)λ−(s−t)(ck−1)λ[(s− t)ckλ]n

n!

= e(s−t)(ck−1)λ

∞∑

n=0

e−(s−t)ckλ[(s− t)ckλ]n

n!
= e(s−t)(ck−1)λ,

where e−λs[λs]n

n!
is the probability of Ns = n, and

∑∞
n=0

e−(s−t)ckλ[(s−t)ckλ]n

n!
= 1 is the probability

function over the whole support of the Poisson distribution used in the last step.

Lemma B.2 The unconditional mean of ckNs is

E
[
c(Ns−Nt)k

]
= e(c

k−1)λ(s−t), s > t, c, k = const.

Proof. This proof simply applies lemma B.1.

B.2 Lucas’ endowment economy with rare disasters

B.2.1 Bellman equation

Choosing the control Cs ∈ R+ at time s, the Bellman equation reads

ρV (Ws) = max
Cs

{
u(Cs) + (µMWs − Cs)VW + 1

2
σ2
MW 2

s VWW

+(Eζ [V ((1− ζM(s))Ws)]− V (Ws))λ
}
.

16We are indebted to Ken Sennewald and Klaus Wälde for discussions.
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B.2.2 General equilibrium prices

Using the inverse function, we are able to determine the path for consumption (u′′ 6= 0).

From the Euler equation (17), we obtain

dCt =
(
(ρ− µM + λ)u′(Ct)/u

′′(Ct)− σ2
MWtCW − 1

2
u′′′(Ct)/u

′′(Ct)σ
2
MW 2

t C
2
W

−Eζ [u′(C((1− ζM(t))Wt))(1− ζM(t))]λ/u′′(Ct)
)
dt

+σMWtCWdBt + (C((1− ζM(t))Wt−)− C(Wt−))dNt, (59)

where we employed the inverse function c = g(u′(c)) which has

g′(u′(c)) = 1/u′′(c), g′′(u′(c)) = −u′′′(c)/(u′′(c))3.

Economically, concave utility (u′(c) > 0, u′′(c) < 0) implies risk aversion, whereas convex

marginal utility, u′′′(c) > 0, implies a positive precautionary saving motive. Accordingly,

−u′′(c)/u′(c) measures absolute risk aversion, whereas −u′′′(c)/u′′(c) measures the degree of

absolute prudence, i.e., the intensity of the precautionary saving motive (Kimball, 1990).

Because output is perishable, using the market clearing condition Yt = Ct = At, and

dCt = µ̄Ctdt+ σ̄CtdBt + (exp(ν̄)− 1)Ct−dNt, (60)

the parameters of price dynamics are pinned down in general equilibrium. In particular,

we obtain Jt implicitly as function of ν̄, Dt (stochastic investment opportunities), and the

curvature of the consumption function, where C̃(Wt) ≡ C((1 − ζM(t))Wt)/C(Wt) defines

optimal consumption jumps. In equilibrium, market clearing requires the percentage jump

in aggregate consumption to match the size of the disaster, exp(ν̄) = C̃(Wt), and thus

exp(ν̄) = C((1 + (Jt −Dt)wt +Dt)Wt)/C(Wt) implies a constant jump size. For example, if

consumption is linear homogeneous in wealth, the jump size of the market portfolio is

ζM = ζ0
M = eν̄ − 1. (61)

Similarly, the market clearing condition pins down σMWtCW = σ̄Ct, and

µM − r = −
u′′(Ct)CWWt

u′(C(Wt))
σ2
M −

u′(eν̄C(Wt))

u′(C(Wt))
((1− eκ)q − ζM)λ. (62)

Inserting our results back into (59), we obtain that consumption follows,

dCt = (ρ− r + λ)
u′(Ct)

u′′(Ct)
dt− 1

2

u′′′(Ct)

u′′(Ct)
σ2
MW 2

t C
2
Wdt− (1− (1− eκ)q)

u′(eν̄Ct)

u′′(Ct)
λdt

+σMWtCWdBt + (C((1− ζM(t))Wt−)− C(Wt−))dNt.

This in turn determines the return on the government bill

r = ρ−
u′′(Ct)Ct

u′(Ct)
µ̄− 1

2

u′′′(Ct)C
2
t

u′(Ct)
σ̄2 + λ− (1− (1− eκ)q)

u′(eν̄Ct)

u′(Ct)
λ. (63)
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B.2.3 General equilibrium consumption growth rates and asset returns

Consumption. Consumption growth rates are exogenous in the endowment economy. Thus,

consumption growth rates can be obtained from the dividend process (7),

As = Ate
(µ̄− 1

2
σ̄2)(s−t)+σ̄(Bs−Bt)+ν̄(Ns−Nt) (64)

⇔ ln(Cs/Ct) = ln(As/At) = (µ̄− 1
2
σ̄2)(s− t) + σ̄(Bs −Bt) + ν̄(Ns −Nt). (65)

Risky asset. Consider a claim which pays a dividend Xc,t+1 = At+1, i.e., an instantaneous

return in period s = t+ 1,

Rc,t+1 =
At+1

Pc,t

. (66)

From (2) we obtain the price of this asset in terms of the consumption good as

Pc,t = Et

[
mt+1

mt

At+1

]

= e−(ρ+(γ−1)µ̄+ 1
2
(1−γ)σ̄2)Et

[
e(1−γ)σ̄(Bt+1−Bt)

]
Et

[
e(1−γ)ν̄(Nt+1−Nt)

]
At

= e−ρ+(1−γ)µ̄− 1
2
(1−γ)σ̄2+ 1

2
(1−γ)2σ̄2+(e(1−γ)ν̄−1)λAt.

Inserting this result together with (64) into (66) finally gives (27).

Riskless asset. Consider a riskless asset which is subject to default risk. Use the random

payoff Xb,t+1 = Ate
r+

∫ t+1
t

ln(1+Ds)dNs and (2) which gives the price of the government bill as

Pb,t = Et

[
mt+1

mt

Ate
r+

∫ t+1
t

ln(1+Ds)dNs

]

= e−(ρ−r+γµ̄− 1
2
γσ̄2)Et

[
e−γσ̄(Bt+1−Bt)

]
Et

[
e(e

ln(1+Dt)−γν̄−1)λ
]
At

= e−(ρ−r+γµ̄− 1
2
γσ̄2)+ 1

2
(γσ̄)2+q(eκ−γν̄−1)λ+(1−q)(e−γν̄−1)λAt = At.

This in turn gives the return of the government bill with default risk.

B.3 A production economy with rare events

B.3.1 The Bellman equation and the Euler equation

As a necessary condition for optimality the Bellman’s principle gives at time s

ρV (Ws, As) = max
Cs

{
u(Cs) +

1

dt
EsdV (Ws, As)

}
.
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Using Itô’s formula yields

dV (Ws, As) = VW (dWs − JsWs−dNt) + VA(dAs − ((exp(ν̄)− 1)At−dN̄t))

+1
2

(
VAAσ̄

2A2
s + VWWσ2W 2

s

)
dt

+[V (Ws, As)− V (Ws−, As−)](dN̄t + dNt)

= ((rs − δ)Ws + wL
s − Cs)VWdt+ VWσWsdZs + VAµ̄Asdt+ VAσ̄AsdBs

+1
2

(
VAAσ̄

2A2
s + VWWσ2W 2

s

)
dt+ [V (eνWs−, As−)− V (Ws−, As−)]dNt

+[V (Ws−, e
ν̄As−)− V (Ws−, As−)]dN̄t.

Using the property of stochastic integrals, we may write

ρV (Ws, As) = max
Cs

{
u(cs) + ((rs − δ)Ws + wL

s − Cs)VW + 1
2

(
VAAσ̄

2A2
s + VWWσ2W 2

s

)

+VAµ̄As + [V (eνWs, As)− V (Ws, As)]λ+ [V (Ws, e
ν̄As)− V (Ws, As)]λ̄

}

for any s ∈ [0,∞). Because it is a necessary condition for optimality, we obtain the first-order

condition (35) which makes optimal consumption a function of the state variables.

For the evolution of the costate we use the maximized Bellman equation

ρV (Wt, At) = u(C(Wt, At)) + ((rt − δ)Wt + wL
t − C(Wt, At))VW + VAµ̄At

+1
2

(
VAAσ̄

2A2
t + VWWσ2W 2

t

)
+ [V (eνWt, At)− V (Wt, At)]λ

+[V (Wt, e
ν̄At)− V (Wt, At)]λ̄, (67)

where rt = r(Wt, At) and wL
t = w(Wt, At) follow from the firm’s optimization problem, and

the envelope theorem (also for the factor rewards) to compute the costate,

ρVW = µ̄AtVAW + ((rt − δ)Wt + wL
t − Ct)VWW + (rt − δ)VW + 1

2

(
VWAAσ̄

2A2
t + VWWWσ2W 2

t

)

+VWWσ2Wt + [VW (eνWt, At)e
ν − VW (Wt, At)]λ+ [VW (Wt, e

ν̄At)− VW (Wt, At)]λ̄.

Collecting terms we obtain

(ρ− (rt − δ) + λ+ λ̄)VW = VAW µ̄At + ((rt − δ)Wt + wL
t − Ct)VWW

+1
2

(
VWAAσ̄

2A2
t + VWWWσ2W 2

t

)

+σ2VWWWt + VW (eνWt, At)e
νλ+ VW (Wt, e

ν̄At)λ̄.

Using Itô’s formula, the costate obeys

dVW = VAW µ̄Atdt+ VAW σ̄AtdBt +
1
2

(
VWAAσ̄

2A2
t + VWWWσ2W 2

t

)
dt+ VWWσWtdZt

+((rt − δ)Wt + wL
t − Ct)VWWdt+ [VW (Wt, At)− VW (Wt−, At−)](dN̄t + dNt)
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where inserting yields

dVW = (ρ− (rt − δ) + λ+ λ̄)VWdt− VW (eνWt, At)e
νλ− VW (Wt, e

ν̄At)λ̄

−σ2VWWWtdt+ VAWAtσ̄dBt + VWWWtσdZt

+[VW (eνWt−, At−)− VW (Wt−, At−)]dNt + [VW (Wt−, e
ν̄At−)− VW (Wt−, At−)]dN̄t,

which describes the evolution of the costate variable. As a final step, we insert the first-order

condition (35) to obtain the Euler equation (36).

B.3.2 Proof of Proposition 3.4

The idea of this proof is to show that using an educated guess of the value function, the

maximized Bellman equation (67) and the first-order condition (35) are both fulfilled. We

guess that the value function reads

V (Wt, At) =
C1W

1−θ
t

1− θ
+ f(At). (68)

From (35), optimal consumption is a constant fraction of wealth,

C−θ
t = C1W

−θ
t ⇔ Ct = C

−1/θ
1 Wt.

Now use the maximized Bellman equation (67), the property of the Cobb-Douglas technology,

FK = αAtK
α−1
t L1−α and FL = (1−α)AtK

α
t L

−α
t , together with the transformationKt ≡ LWt,

and insert the solution candidate,

ρ
C1W

1−θ
t

1− θ
=

C
− 1−θ

θ

1 W 1−θ
t

1− θ
+ (αAtW

α−1
t Wt − δWt + (1− α)AtW

α
t − C

−1/θ
1 Wt)C1W

−θ
t

−1
2
θC1W

1−θ
t σ2 − g(At) + (e(1−θ)ν − 1)

C1W
1−θ
t

1− θ
λ,

where we defined g(At) ≡ ρf(At)−fAµ̄At−
1
2
fAAσ̄

2A2
t − [f(eν̄At)−f(At)]λ̄. When imposing

the condition α = θ and g(At) = C1At it can be simplified to

(ρ− (e(1−θ)ν − 1)λ)
C1W

1−θ
t

1− θ
+ g(At) =

C
− 1−θ

θ

1 W 1−θ
t

1− θ
+ (AtW

α−θ
t − δW 1−θ

t − C
−1/θ
1 W 1−θ

t )C1

−1
2
θC1W

1−θ
t σ2

⇔ (ρ− (e(1−θ)ν − 1)λ)W 1−θ
t = θC

−1/θ
1 W 1−θ

t − (1− θ)δW 1−θ
t − 1

2
θ(1− θ)W 1−θ

t σ2,

which implies that C
−1/θ
1 =

(
ρ− (e(1−θ)ν − 1)λ+ (1− θ)δ + 1

2
θ(1− θ)σ2

)
/θ. This proves

that the guess (68) indeed is a solution, and by inserting the guess together with the constant,

we obtain the optimal policy function for consumption.
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B.3.3 Proof of Proposition 3.6

The idea of this proof follows Section B.3.2. An educated guess of the value function is

V (Wt, At) =
C1W

1−αθ
t

1− αθ
A−θ

t . (69)

From (35), optimal consumption is a constant fraction of income, C−θ
t = C1W

−αθ
t A−θ

t or

equivalently Ct = C
−1/θ
1 W α

t At. Now use the maximized Bellman equation (67), the property

of the Cobb-Douglas technology, FK = αAtK
α−1
t L1−α and FL = (1− α)AtK

α
t L

−α, together

with the transformation Kt ≡ LWt, and insert the solution candidate,

ρV (Wt, At) =
C

− 1−θ
θ

1 W α−αθ
t A1−θ

t

1− θ
+ ((rt − δ)Wt + wL

t − C(Wt, At))VW + VAµ̄At

+1
2

(
VAAσ̄

2A2
t + VWWσ2W 2

t

)
+ [V (eνWt, At)− V (Wt, At)]λ

+[V (Wt, e
ν̄At)− V (Wt, At)]λ̄.

Inserting the guess and collecting terms which is equivalent to

(ρ− (e(1−αθ)ν − 1)λ− (e−θν̄ − 1)λ̄)
C1W

1−αθ
t

1− αθ
A−θ

t =

C
− 1−θ

θ

1 W α−αθ
t A1−θ

t

1− θ
− θ

C1W
1−αθ
t

1− αθ
µ̄A−θ

t

+
(
αAtW

α
t − δWt + (1− α)AtW

α
t − C

−1/θ
1 W α

t At

)
C1W

−αθ
t A−θ

t

+1
2

(
θ(1 + θ)σ̄2 − αθ(1− αθ)σ2

) C1W
1−αθ
t

1− αθ
A−θ

t .

Collecting terms gives

ρ+ θµ̄− 1
2

(
θ(1 + θ)σ̄2 − αθ(1− αθ)σ2

)
+ (1− αθ)δ − (e(1−αθ)ν − 1)λ− (e−θν̄ − 1)λ̄ =(

θ

1− θ
C

−1/θ
1 + 1

)
(1− αθ)AtW

α−1
t ,

which has a solution for C
−1/θ
1 = (θ − 1)/θ and

ρ = (e−θν̄ − 1)λ̄+ (e(1−αθ)ν − 1)λ− θµ̄+ 1
2

(
θ(1 + θ)σ̄2 − αθ(1− αθ)σ2

)
− (1− αθ)δ.

This proves that the guess (69) indeed is a solution, and by inserting the guess together with

the constant, we obtain the optimal policy function for consumption.
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B.3.4 Obtaining the rental rate of capital

The rental rate of capital, rt = YK , in a neoclassical Cobb-Douglas economy where output

is defined as Yt ≡ AtY (Kt, L) = AtK
α
t L

1−α follows from the stochastic differential

dAtK
α−1
t = (α− 1)AtK

α−2
t (Yt − Ct − δKt)dt+ (α− 1)σAtKtK

α−2
t dZt

+(AtK
α−1
t − At−K

α−1
t− )(dNt + dN̄t) +

1
2
(α− 1)(α− 2)Kα−3

t σ2K2
t Atdt

+Kα−1
t (dAt − (exp(ν̄)− 1)At−dN̄t)

= (α− 1)(Yt/Kt − Ct/Kt − δ)AtK
α−1
t dt+ (α− 1)σAtK

α−1
t dZt

+(exp((α− 1)ν)− 1)At−K
α−1
t− dNt +

1
2
(α− 1)(α− 2)AtK

α−1
t σ2dt

+µ̄AtK
α−1
t dt+ σ̄AtK

α−1
t dBt + (exp(ν̄)− 1)At−K

α−1
t− dN̄t.

It implies

drt = 1−α
α

(
αCt/Kt + αδ − 1

2
α(α− 2)σ2 − α

α−1
µ̄− rt

)
rtdt+ (α− 1)σrtdZt + σ̄rtdBt

+(exp((α− 1)ν)− 1)rt−dNt + (exp(ν̄)− 1)rt−dN̄t,

which for our explicit solutions is a reducible stochastic differential equation.

For α = γ we obtain

drt = 1−α
α

(
αφ+ αδ − 1

2
α(α− 2)σ2 − α

α−1
µ̄− rt

)
rtdt+ (α− 1)σrtdZt + σ̄rtdBt

+(exp((α− 1)ν)− 1)rt−dNt + (exp(ν̄)− 1)rt−dN̄t,

≡ c1
(
c2 − rt

)
rtdt+ (α− 1)σrtdZt + σ̄rtdBt + (exp((α− 1)ν)− 1)rt−dNt

+(exp(ν̄)− 1)rt−dN̄t,

where we defined c1 ≡
1−α
α

and c2 ≡ αφ+ αδ − 1
2
α(α− 2)σ2 − α

α−1
µ̄.

For ρ = ρ̄ we obtain

drt = 1−α
α

(
αδ − 1

2
α(α− 2)σ2 − α

α−1
µ̄− srt

)
rtdt+ (α− 1)σrtdZt + σ̄rtdBt

+(exp((α− 1)ν)− 1)rt−dNt + (exp(ν̄)− 1)rt−dN̄t

≡ c1
(
c2 − rt

)
rtdt+ (α− 1)σrtdZt + σ̄rtdBt + (exp((α− 1)ν)− 1)rt−dNt

+(exp(ν̄)− 1)rt−dN̄t,

where we defined c1 ≡
1−α
αγ

and c2 ≡ αγδ − 1
2
αγ(α− 2)σ2 − αγ

α−1
µ̄.

Because the stochastic differential equation for rt is reducible, it has the solution

rs = Θs,t

(
r−1
t + c1

∫ s

t

Θv,tdv

)−1

,

where Θs,t ≡ e(c1c2−
1
2
((α−1)σ)2− 1

2
σ̄2)(s−t)+(Zs−Zt)(α−1)σ+(Bs−Bt)σ̄+(α−1)ν(Ns−Nt)+ν̄(N̄s−N̄t). Observe

that the closed-form solution simplifies the problem of simulating Euler equation errors.
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B.3.5 General equilibrium consumption growth rates and asset returns

Consumption. Observe that the solution to (29) is for s ≥ t

As = Ate
(µ̄− 1

2
σ̄2)(s−t)+σ̄(Bs−Bt)+ν̄(N̄s−N̄t)

⇔ ln(As/At) = (µ̄− 1
2
σ̄2)(s− t) + σ̄(Bs −Bt) + ν̄(N̄s − N̄t). (70)

Similarly, we obtain growth rates of the capital stock from (30)

ln(Kt/Ks) =

∫ t

s

(
rv/α− Cv/Kv − δ − 1

2
σ2
)
dv + σ(Zt − Zs) + ν(Nt −Ns). (71)

For the case of α = γ, as from Proposition 3.4, consumption is a linear function in the

capital stock Ct = φKt. Hence, the consumption growth rate is ln(Cs/Ct)|α=γ = ln(Kt/Ks)

which gives (43). For the case of ρ = ρ̄, as from Proposition 3.6, consumption is a constant

fraction of output, Ct = (1 − s)Yt, and thus we obtain the consumption growth rate as

ln(Cs/Ct)|ρ=ρ̄ = ln(Ys/Yt) = ln(As/At) + α ln(Ks/Kt), which finally gives (44).

Risky assets. Consider a risky bond that pays continuously at the rate, rt. Investing into

this asset gives the random payoff Xb,t+1 = e
∫ t+1
t

rsds. From (2) we obtain the price

Pb,t = Et

[
mt+1

mt

e
∫ t+1
t

rsds

]

⇒ Pb,t|α=γ = eδ+γσ2+e−γνλ−e(1−γ)νλ, Pb,t|ρ=ρ̄ = eδ+γασ2+e−αγνλ−e(1−αγ)νλ.

Hence, we obtain the returns for the bond as in (46) and (47).

Consider a claim on output which pays Xc,t+1 = At+1K
α
t+1, i.e., an instantaneous return

in period s = t+ 1,

Rc,t+1 =
At+1K

α
t+1

Pc,t

. (72)

where from (70) and (71), we obtain output at date s ≥ t from

AsK
α
s = AtK

α
t e

(µ̄− 1
2
σ̄2)(s−t)+

∫ s

t
(rv−αCv/Kv−αδ−α 1

2
σ2)dv+σ̄(Bs−Bt)+ασ(Zs−Zt)+αν(Ns−Nt)+ν̄(N̄s−N̄t).

From (2) we obtain the price of this asset in terms of the consumption good as

Pc,t = Et

[
mt+1

mt

At+1K
α
t+1

]

⇒ Pc,t|α=γ = AtK
α
t Et

[
eµ̄−

1
2
σ̄2−αφ−αδ−α 1

2
σ2+δ+λ−e(1−γ)νλ+γσ2− 1

2
(γσ)2+σ̄(Bt+1−Bt)+ν̄(N̄t+1−N̄t)

]

= AtK
α
t e

−(αφ+αδ+α 1
2
σ2−δ−λ+e(1−γ)νλ−γσ2+ 1

2
(γσ)2−µ̄−(eν̄−1)λ̄),

Pc,t|ρ=ρ̄ = AtK
α
t e

αδ+α 1
2
σ2−(1−e(1−αγ)ν)λ−(1−e−γν̄)λ̄−γασ2+ 1

2
(γσ̄)2+ 1

2
(αγσ)2+µ̄− 1

2
σ̄2

×Et

[
e−

∫ t+1
t

( γ−1
γ

rs−δ)ds+(1−γ)(σ̄(Bt+1−Bt)+ασ(Zt+1−Zt)+αν(Nt+1−Nt)+ν̄(N̄t+1−N̄t))
]
,
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where the latter needs to be determined numerically. Observe that for the case of α = γ, we

obtain the claim of this asset in closed form, with the return (48).

Consider a claim on capital

Rc,t+1 =
Kαγ

t+1

Pc,t

, (73)

where from (71), we obtain the function of capital as

Kαγ
s = Kαγ

t e
∫ s

t
(γrv−αγCv/Kv−αγδ− 1

2
αγσ2)dv+αγσ(Zs−Zt)+αγν(Ns−Nt).

From (2) we obtain the price of this asset in terms of the consumption good as

Pc,t = Et

[
mt+1

mt

Kαγ
t+1

]

⇒ Pc,t|α=γ = Kαγ
t eδ+λ−e(1−γ)νλ+γσ2− 1

2
(γσ)2−αγφ−αγδ− 1

2
αγσ2

×Et

[
e−

∫ t+1
t

(1−γ)rsds+(α−1)γσ(Zs−Zt)+(α−1)γν(Ns−Nt)
]
,

Pc,t|ρ=ρ̄ = Kαγ
t e−(αγδ+ 1

2
αγσ2−δ−(1−e(1−αγ)ν)λ−(1−e−γν̄)λ̄−γασ2+ 1

2
(γσ̄)2+ 1

2
(αγσ)2)

×Et

[
e−γσ̄(Bt+1−Bt)−γν̄(N̄t+1−N̄t)

]

= Kαγ
t e−(αγδ+ 1

2
αγσ2−δ−(1−e(1−αγ)ν)λ−γασ2+ 1

2
(αγσ)2),

with the return to the equity claim for the latter yields (49).

Riskless asset. From (41) or (42) and (2), we obtain for any riskless security

Rf,t+1|α=γ =
(
Et

[
e−

∫ t+1
t

(rs−δ)ds+λ−e(1−γ)νλ+γσ2− 1
2
(γσ)2−γσ(Zt+1−Zt)−γν(Nt+1−Nt)

])−1

,

Rf,t+1|ρ=ρ̄ =
(
Et

[
e−

∫ t+1
t

(rs−δ)ds+(1−e(1−αγ)ν)λ+(1−e−γν̄)λ̄+γασ2− 1
2
(γσ̄)2− 1

2
(αγσ)2

×e−γσ̄(Bt+1−Bt)−αγσ(Zt+1−Zt)−αγν(Nt+1−Nt)−γν̄(N̄t+1−N̄t)
])−1

,

which is not available in closed-form, but will be time-varying.

B.3.6 Euler equation errors

Consider two assets, i.e., the risky bond, Rb,t+1, and the claim on capital or output, Rc,t+1.

From the definition of Euler equation errors (3), for any asset i and CRRA preferences

eiR|α=γ = Et

[
e−

∫ t+1
t

(rs−δ)ds+λ−e(1−γ)νλ+γσ2− 1
2
(γσ)2−γσ(Zt+1−Zt)−γν(Nt+1−Nt)Ri,t+1

]
− 1,

eiR|ρ=ρ̄ = Et

[
e−

∫ t+1
t

(rs−δ)ds+(1−e(1−αγ)ν)λ+(1−e−γν̄)λ̄+γασ2− 1
2
(γσ̄)2− 1

2
(αγσ)2

×e−γσ̄(Bt+1−Bt)−αγσ(Zt+1−Zt)−αγν(Nt+1−Nt)−γν̄(N̄t+1−N̄t)Ri,t+1

]
− 1,

where we inserted the SDFs from (41) and (42). Note that Euler equation errors based on

excess returns can be obtained from eiX = eiR − ebR for any asset i.
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Risky assets. Inserting the one-period equilibrium returns for the bond yields

ebR|α=γ = Et

[
e(1−e−γν)λ− 1

2
(γσ)2−γσ(Zt+1−Zt)−γν(Nt+1−Nt)

]
− 1,

ebR|ρ=ρ̄ = Et

[
e(1−e−αγν)λ+(1−e−γν̄)λ̄− 1

2
(γσ̄)2− 1

2
(αγσ)2

×e−γσ̄(Bt+1−Bt)−αγσ(Zt+1−Zt)−αγν(Nt+1−Nt)−γν̄(N̄t+1−N̄t)
]
− 1.

Conditional on no disasters, on average we can rationalize Euler equation errors

ebR|Nt+1−Nt=0|α=γ = exp
(
(1− e−γν)λ

)
− 1,

ebR|Nt+1−Nt=0|ρ=ρ̄ = exp
(
(1− e−αγν)λ

)
− 1,

or, conditional on no rare events, on average we can rationalize Euler equation errors

ebR|Nt+1−Nt=N̄t+1−N̄t=0|α=γ = exp
(
(1− e−γν)λ

)
− 1,

ebR|Nt+1−Nt=N̄t+1−N̄t=0|ρ=ρ̄ = exp
(
(1− e−αγν)λ+ (1− e−γν̄)λ̄

)
− 1.

Similarly, inserting the return on the claims on output (48) and capital (49) yields

ecR|α=γ = Et

[
e−

1
2
σ̄2−(eν̄−1)λ̄+σ̄(Bt+1−Bt)+ν̄(N̄t+1−N̄t)

]
− 1,

ecR|ρ=ρ̄ = Et

[
e−

1
2
(γσ̄)2−(e−γν̄−1)λ̄−γσ̄(Bt+1−Bt)−γν̄(N̄t+1−N̄t)

]
− 1,

respectively.

B.3.7 Estimated Euler equation errors

Consider two assets, i.e., the risky bond, Rb,t+1, and the claim on capital or output, Rc,t+1.

Using estimated Euler equation errors in (4), for any asset i and CRRA preferences

êiR|α=γ = Et

[
e−ρ̂−(1/α

∫ t+1
t

rsds−(φ+δ+ 1
2
σ2)+σ(Zt+1−Zt)+ν(Nt+1−Nt))γ̂Ri,t+1

]
− 1,

êiR|ρ=ρ̄ = Et

[
e−ρ̂−(1/γ

∫ t+1
t

rsds+µ̄− 1
2
σ̄2−αδ− 1

2
ασ2+σ̄(Bt+1−Bt)+ασ(Zt+1−Zt)+αν(Nt+1−Nt))γ̂Ri,t+1

]
− 1,

where we used the equilibrium consumption growth rates from (43) and (44). The estimated

Euler equation errors for excess returns can be obtained from êiX = êiR − êfR for any asset i.

Risky assets. Inserting the one-period equilibrium returns for the bond into

êbR|α=γ = Et

[
e−ρ̂−(1/α

∫ t+1
t

rsds−(φ+δ+ 1
2
σ2)+σ(Zt+1−Zt)+ν(Nt+1−Nt))γ̂Rb,t+1

]
− 1,

êbR|ρ=ρ̄ = Et

[
e−ρ̂−(1/γ

∫ t+1
t

rsds+µ̄− 1
2
σ̄2−αδ− 1

2
ασ2+σ̄(Bt+1−Bt)+ασ(Zt+1−Zt)+αν(Nt+1−Nt))γ̂Rb,t+1

]
− 1.
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